SLVS302B December   2000  – October 2015 TPS60300 , TPS60301 , TPS60302 , TPS60303

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Description (continued)
  6. Device Comparison Table
  7. Pin Configuration and Functions
  8. Specifications
    1. 8.1 Absolute Maximum Ratings
    2. 8.2 ESD Ratings
    3. 8.3 Recommended Operating Conditions
    4. 8.4 Thermal Information
    5. 8.5 Electrical Characteristics
    6. 8.6 Typical Characteristics
  9. Detailed Description
    1. 9.1 Overview
    2. 9.2 Functional Block Diagram
    3. 9.3 Feature Description
      1. 9.3.1 Power-Good Detector
    4. 9.4 Device Functional Modes
      1. 9.4.1 Start-up Procedure
      2. 9.4.2 Shutdown
  10. 10Application and Implementation
    1. 10.1 Application Information
    2. 10.2 Typical Application
      1. 10.2.1 Design Requirements
      2. 10.2.2 Detailed Design Procedure
        1. 10.2.2.1 Capacitor Selection
        2. 10.2.2.2 Output Filter Design
      3. 10.2.3 Application Curves
  11. 11Power Supply Recommendations
  12. 12Layout
    1. 12.1 Layout Guidelines
    2. 12.2 Layout Example
    3. 12.3 Power Dissipation
  13. 13Device and Documentation Support
    1. 13.1 Device Support
      1. 13.1.1 Third-Party Products Disclaimer
    2. 13.2 Related Links
    3. 13.3 Community Resources
    4. 13.4 Trademarks
    5. 13.5 Electrostatic Discharge Caution
    6. 13.6 Glossary
  14. 14Mechanical, Packaging, and Orderable Information

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ
発注情報

10 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

10.1 Application Information

The TPS6030x is a switched capacitor voltage converter providing low noise, constant-frequency linear regulation mode. It supports regulated output voltages of 3 V and 3.3 V from a 0.9-V to 1.8-V input voltage range.

10.2 Typical Application

TPS60300 TPS60301 TPS60302 TPS60303 typapp2.png Figure 3. Typical Operating Circuit

10.2.1 Design Requirements

The complete charge pump circuitry requires no inductors and only five small 1-µF ceramic capacitors. It is possible to only use 1-µF capacitors of the same type.

10.2.2 Detailed Design Procedure

10.2.2.1 Capacitor Selection

The values of the five external capacitors of the TPS6030x charge pumps are closely linked to the required output current and the output noise and ripple requirements.

For the maximum output current and best performance, five ceramic capacitors with a minimum value of 1 µF are recommended. This value is necessary to assure a stable operation of the system due to the linear mode. For lower currents or higher allowed output voltage ripple, other capacitors can be used. With flying capacitors lower than 1 µF, the maximum output power will decrease. This means that the device will work in the linear mode with lower output currents.

The input capacitor improves system efficiency by reducing the input impedance and stabilizing the input current.

The minimum required capacitance of the output capacitor (COUT) that can be selected is 1 µF. Depending on the maximum allowed output ripple voltage, larger values can be chosen. Table 1 shows capacitor values recommended for low output voltage ripple operation. A recommendation is given for the smallest size.

Table 1. Recommended Capacitor Values for Low Output Voltage Ripple Operation

VIN
[V]
IOUT(OUT2)
[mA]
CIN
[µF]
CXF
[µF]
COUT
[µF]
VP-P [mV]
At 20 mA / VIN = 1.1 V
CERAMIC CERAMIC CERAMIC
0.9...1.8 0...20 1 1 1 16
0.9...1.8 0...20 1 1 2.2 10
0.9...1.8 0…20 1 1 10 // 0.1 6

Table 2. Recommended Capacitors

MANUFACTURER PART NUMBER SIZE CAPACITANCE TYPE
Taiyo Yuden UMK212BJ104MG
LMK212BJ105KG
LMK212BJ225MG
JMK316BJ475KL
805
805
805
1206
0.1 µF
1 µF
2.2 µF
4.7 µF
Ceramic
Ceramic
Ceramic
Ceramic
AVX 0805ZC105KAT2A
1206ZC225KAT2A
805
1206
1 µF
2.2 µF
Ceramic
Ceramic

Table 3 lists the manufacturers of recommended capacitors. However, ceramic capacitors will provide the lowest output voltage ripple due to their typically lower ESR.

Table 3. Recommended Capacitor Manufacturers

MANUFACTURER CAPACITOR TYPE INTERNET
Taiyo Yuden X7R/X5R ceramic www.t-yuden.com
AVX X7R/X5R ceramic www.avxcorp.com
Vishay X7R/X5R ceramic www.vishay.com
Kemet X7R/X5R ceramic www.kemet.com
TDK X7R/X5R ceramic www.component.tdk.com

10.2.2.2 Output Filter Design

The power-good output is capable of driving light loads up to 5 mA (see Figure 4). Therefore, the output resistance of the power-good pin, in addition with an output capacitor, can be used as an RC-filter.

TPS60300 TPS60301 TPS60302 TPS60303 typapp3.png Figure 4. TPS60302, TPS60303 Push-Pull Power-Good Output-Stage as Filtered Supply

Due to R(PG,1), an output filter can easily be formed with an output capacitor (CPG). Cut-off frequency is given by:

Equation 1. TPS60300 TPS60301 TPS60302 TPS60303 Eq01_fc_slvs302.gif
Equation 2. TPS60300 TPS60301 TPS60302 TPS60303 Eq02_and_slvs302.gif

with R(PG,1) = 15 Ω, C(PG) = 0.1 µF and f = 600 kHz (at nominal switching frequency)

Equation 3. TPS60300 TPS60301 TPS60302 TPS60303 Eq03_0175_slvs302.gif

Load current sourced by power-good output reduces maximum output current at OUT2. During start-up (power good going high) current charging C(PG) will discharge C(OUT2). Therefore, C(PG) must not be larger than 0.1 C(OUT2) or the device will not start. By charging C(PG) through C(OUT2), the output voltage at OUT2 will decrease. If the capacitance of C(PG) is to large, the circuit will detect power bad. The power-good output will go low and discharge C(PG). Then the cycle starts again. Figure 5 shows a configuration with an LC-post filter to further reduce output ripple and noise.

TPS60300 TPS60301 TPS60302 TPS60303 typapp4.png Figure 5. LC-Post Filter

Table 4. Recommended Values for Lowest Output Voltage Ripple

VIN
[V]
IO(OUT2)
[mA]
CIN[µF] CXF[µF] COUT[µF] LP[µH] CP[µF] VP(OUT)
VP-P[mV]
CERAMIC CERAMIC CERAMIC CERAMIC
0.9...1.8 20 1 1 1 0.1 0.1 (X7R) 16
0.9...1.8 20 1 1 1 0.1 1 // 0.1 (X7R) 12
0.9...1.8 20 1 1 1 1 0.1 (X7R) 14
0.9...1.8 20 1 1 10 1 1 // 0.1 (X7R) 3
TPS60300 TPS60301 TPS60302 TPS60303 typapp5.png Figure 6. Application With MSP430; PG as Supply for Analog Circuits

10.2.3 Application Curves

TPS60300 TPS60301 TPS60302 TPS60303 typchar1.png Figure 7. TPS60300, TPS60302
Efficiency vs Output Current
TPS60300 TPS60301 TPS60302 TPS60303 typchar3.png Figure 9. TPS60300
Supply Current vs Output Current
TPS60300 TPS60301 TPS60302 TPS60303 typchar6.png Figure 11. TPS60301, TPS60303
Output Voltage (OUT2) vs Output Current (OUT2)
TPS60300 TPS60301 TPS60302 TPS60303 typchar8.png Figure 13. TPS60300, TPS60302
Output Voltage (OUT2) vs Input Voltage
TPS60300 TPS60301 TPS60302 TPS60303 typchar10.png Figure 15. TPS6030x
Output Voltage (OUT1) vs Input Voltage
TPS60300 TPS60301 TPS60302 TPS60303 typchar12.png Figure 17. TPS60301, TPS60303
Output Voltage (OUT2) vs Free-Air Temperature
TPS60300 TPS60301 TPS60302 TPS60303 typchar14.png Figure 19. TPS60300, TPS60302
Minimum Input Voltage vs Output Current
TPS60300 TPS60301 TPS60302 TPS60303 typchar16.png Figure 21. Start-Up Timing Enable
TPS60300 TPS60301 TPS60302 TPS60303 typchar19.png Figure 23. Line Transient Response
TPS60300 TPS60301 TPS60302 TPS60303 typchar2.png Figure 8. TPS60301, TPS60303
Efficiency vs Output Current
TPS60300 TPS60301 TPS60302 TPS60303 typchar5.png Figure 10. TPS60300, TPS60302
Output Voltage (OUT2) vs Output Current (OUT2)
TPS60300 TPS60301 TPS60302 TPS60303 typchar7.png Figure 12. TPS60300, TPS60302
Output Voltage (OUT1) vs Output Current (OUT1)
TPS60300 TPS60301 TPS60302 TPS60303 typchar9.png Figure 14. TPS60300, TPS60302
Output Voltage (OUT2) vs Input Voltage
TPS60300 TPS60301 TPS60302 TPS60303 typchar11.png Figure 16. TPS60300, TPS60302
Output Voltage (OUT2) vs Free-Air Temperature
TPS60300 TPS60301 TPS60302 TPS60303 typchar13.png Figure 18. TPS6030x
Output Voltage Ripple (OUT2)
TPS60300 TPS60301 TPS60302 TPS60303 typchar15.png Figure 20. TPS60301, TPS60303
Minimum Input Voltage vs Output Current
TPS60300 TPS60301 TPS60302 TPS60303 typchar18.png Figure 22. Load Transient Response