SLVSA05B August   2009  – August 2015 TPS61086

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Soft-Start
      2. 7.3.2 Undervoltage Lockout (UVLO)
      3. 7.3.3 Thermal Shutdown
      4. 7.3.4 Overvoltage Prevention
    4. 7.4 Device Functional Modes
      1. 7.4.1 Power Save Mode
      2. 7.4.2 Forced PWM Mode
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Applications
      1. 8.2.1 3.3-V to 12-V Boost Converter With PFM Mode at Light Load
        1. 8.2.1.1 Design Requirements
        2. 8.2.1.2 Detailed Design Procedure
          1. 8.2.1.2.1 Inductor Selection
          2. 8.2.1.2.2 Rectifier Diode Selection
          3. 8.2.1.2.3 Setting the Output Voltage
          4. 8.2.1.2.4 Compensation (COMP)
          5. 8.2.1.2.5 Input Capacitor Selection
          6. 8.2.1.2.6 Output Capacitor Selection
        3. 8.2.1.3 Application Curves
      2. 8.2.2 3.3-V to 12-V Boost Converter With Forced PWM Mode at Light Load
        1. 8.2.2.1 Design Requirements
        2. 8.2.2.2 Detailed Design Procedure
        3. 8.2.2.3 Application Curves
    3. 8.3 System Examples
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Community Resources
    2. 11.2 Trademarks
    3. 11.3 Electrostatic Discharge Caution
    4. 11.4 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)
MIN MAX UNIT
Input voltage IN(2) –0.3 7 V
Voltage on pins EN, FB, SS, MODE, COMP –0.3 7 V
Voltage on pin SW –0.3 20 V
Operating junction temperature –40 150 °C
Storage temperature –65 150 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability
(2) All voltage values are with respect to network ground terminal.

6.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±2000 V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2) ±500
Machine Model ±200
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Pins listed as ±2000 V may actually have higher performance.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Pins listed as ±500 V may actually have higher performance.

6.3 Recommended Operating Conditions

MIN MAX UNIT
VIN Input voltage 2.3 6 V
VS Boost output voltage VIN + 0.5 18.5 V
TA Operating free-air temperature –40 85 °C
TJ Operating junction temperature –40 125 °C

6.4 Thermal Information

THERMAL METRIC(1) TPS61086 UNIT
DRC (VSON)
10 PINS
RθJA Junction-to-ambient thermal resistance 54.7 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 67.2 °C/W
RθJB Junction-to-board thermal resistance 29.6 °C/W
ψJT Junction-to-top characterization parameter 2.3 °C/W
ψJB Junction-to-board characterization parameter 29.8 °C/W
RθJC(bot) Junction-to-case (bottom) thermal resistance 15.6 °C/W
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

6.5 Electrical Characteristics

VIN = 3.3 V, EN = IN, VS = 12 V, TA = –40°C to 85°C, typical values are at TA = 25°C (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
SUPPLY
VIN Input voltage range 2.3 6 V
IQ Operating quiescent current into IN Device not switching, VFB = 1.3 V 75 100 μA
ISDVIN Shutdown current into IN EN = GND 1 μA
VUVLO Undervoltage lockout threshold VIN falling 2.2 V
VIN rising 2.3 V
TSD Thermal shutdown Temperature rising 150 °C
TSDHYS Thermal shutdown hysteresis 14 °C
LOGIC SIGNALS EN, FREQ
VIH High level input voltage VIN = 2.3 V to 6 V 2 V
VIL Low level input voltage VIN = 2.3 V to 6 V 0.5 V
IINLEAK Input leakage current EN = GND 0.1 μA
BOOST CONVERTER
VS Boost output voltage VIN + 0.5 18.5 V
VFB Feedback regulation voltage 1.23 1.238 1.246 V
gm Transconductance error amplifier 107 μA/V
IFB Feedback input bias current VFB = 1.238 V 0.1 μA
rDS(on) N-channel MOSFET on-resistance VIN = VGS = 5 V, ISW = current limit 0.13 0.2 Ω
VIN = VGS = 3.3 V, ISW = current limit 0.16 0.23
ISWLEAK SW leakage current EN = GND, VSW = 6 V 10 μA
ILIM N-channel MOSFET current limit 2 2.6 3.2 A
ISS Soft-start current VSS = 1.238 V 7 10 13 μA
fS Oscillator frequency 0.9 1.2 1.5 MHz
Line regulation VIN = 2.3 V to 6 V, IOUT = 10 mA 0.0002 %/V
Load regulation VIN = 3.3 V, IOUT = 1 mA to 400 mA 0.11 %/A

6.6 Typical Characteristics

The typical characteristics are measured with the inductor CDRH6D12 3.3 µH from Sumida and the rectifier diode SL22.

Table 1. Table of Graphs

FIGURE
η Efficiency vs Load current- PFM VIN = 3.3 V, VS = 9 V, 12 V, 15 V Figure 1
η Efficiencyvs Load current - Forced PWM VIN = 3.3 V, VS = 9 V, 12 V, 15 V Figure 2
Iout(max) Maximum output current Figure 3
fS Switching frequency - Forced PWM vs Load current, VIN = 3.3 V, VS = 12 V Figure 4
fS Switching frequency - Forced PWM vs Supply voltage, VS = 12 V, Iout = 200 mA Figure 5
Supply current vs Supply voltage,VIN = 3.3 V, VS = 12 V Figure 6
TPS61086 eff_pfm_slvsa05.gif
Figure 1. PFM Mode Efficiency vs Output Current
TPS61086 iout_max_slvsa05.gif
Figure 3. Output Current vs Supply Voltage
TPS61086 freq_vi_slvsa05.gif
Figure 5. Frequency vs Supply Voltage
TPS61086 eff_pwm_slvsa05.gif
Figure 2. Force PWM Mode Efficiency vs Output Current
TPS61086 freq_io_slvsa05.gif
Figure 4. Frequency vs Load Current
TPS61086 iq_slvsa05.gif
Figure 6. Supply Current vs Supply Voltage