SLVSAO4C December 2010 – June 2020 TPS61240-Q1
PRODUCTION DATA.
The first step of circuit and stability evaluation is to look from a steady-state perspective at the following signals:
These are the basic signals that need to be measured when evaluating a switching converter. When the switching waveform shows large duty cycle jitter or the output voltage or inductor current shows oscillations, the regulation loop may be unstable. This is often a result of board layout and/or L-C combination.
As a next step in the evaluation of the regulation loop, the load transient response is tested. Time between the load transient and the turn on of the P-channel MOSFET, the output capacitor must supply all of the current required by the load. VO immediately shifts by an amount equal to ΔI(LOAD) × ESR, where ESR is the effective series resistance of CO. ΔI(LOAD) begins to charge or discharge CO generating a feedback error signal used by the regulator to return VO to its steady-state value. The results are very easily interpreted when the device operates in PWM mode. During recovery time, VO can be monitored for settling time, overshoot or ringing to judge the converter’s stability. Without any ringing, the loop has usually more than 45° of phase margin. Because the damping factor of the circuitry is directly related to several resistive parameters (for example, MOSFET rDS(on)) that are temperature dependant, the loop stability analysis has to be done over the input voltage range, load current range, and temperature range.