JAJSJ29E May   2020  – October 2024 TPS61378-Q1

PRODUCTION DATA  

  1.   1
  2. 特長
  3. アプリケーション
  4. 概要
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Typical Characteristics
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1  VCC Power Supply
      2. 7.3.2  Input Undervoltage Lockout (UVLO)
      3. 7.3.3  Enable and Soft Start
      4. 7.3.4  Shut Down
      5. 7.3.5  Switching Frequency Setting
      6. 7.3.6  Spread Spectrum Frequency Modulation
      7. 7.3.7  Adjustable Peak Current Limit
      8. 7.3.8  Bootstrap
      9. 7.3.9  Load Disconnect
      10. 7.3.10 MODE/SYNC Configuration
      11. 7.3.11 Overvoltage Protection (OVP)
      12. 7.3.12 Output Short Protection/Hiccup
      13. 7.3.13 Power-Good Indicator
      14. 7.3.14 Thermal Shutdown
    4. 7.4 Device Functional Modes
      1. 7.4.1 Forced PWM Mode
      2. 7.4.2 Auto PFM Mode
      3. 7.4.3 External Clock Synchronization
      4. 7.4.4 Down Mode
  9. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1 Programming the Output Voltage
        2. 8.2.2.2 Setting the Switching Frequency
        3. 8.2.2.3 Setting the Current Limit
        4. 8.2.2.4 Selecting the Inductor
        5. 8.2.2.5 Selecting the Output Capacitors
        6. 8.2.2.6 Selecting the Input Capacitors
        7. 8.2.2.7 Loop Stability and Compensation
          1. 8.2.2.7.1 Small Signal Model
          2. 8.2.2.7.2 Loop Compensation Design Steps
          3. 8.2.2.7.3 Selecting the Bootstrap Capacitor
          4. 8.2.2.7.4 VCC Capacitor
      3. 8.2.3 Application Curves
  10. Power Supply Recommendations
  11. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  12. 11Device and Documentation Support
    1. 11.1 Device Support
      1. 11.1.1 サード・パーティ製品に関する免責事項
    2. 11.2 ドキュメントの更新通知を受け取る方法
    3. 11.3 サポート・リソース
    4. 11.4 Trademarks
    5. 11.5 用語集
    6. 11.6 静電気放電に関する注意事項
  13. 12Revision History
  14. 13Mechanical, Packaging, and Orderable Information

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ
発注情報

Selecting the Output Capacitors

The output capacitor is mainly selected to meet the requirements at load transient or steady state. The loop is compensated for the output capacitor selected. The output ripple voltage is related to the equivalent series resistance (ESR) of the capacitor and its capacitance. Assuming a capacitor with zero ESR, the minimum capacitance needed for a given ripple can be calculated by Equation 13:

Equation 13. TPS61378-Q1

where

  • COUT is the output capacitor
  • IOUT is the output current
  • VOUT is the output voltage
  • VIN is the input voltage
  • ΔV is the output voltage ripple required
  • ƒSW is the switching frequency

The additional output ripple component caused by ESR is calculated by Equation 14:

Equation 14. TPS61378-Q1

where

  • ΔVESR is the output voltage ripple caused by ESR
  • RESR is the resistor in series with the output capacitor

For the ceramic capacitor, the ESR ripple can be neglected. However, for the tantalum or electrolytic capacitors, it must be considered if used.

The minimum ceramic output capacitance needed to meet a load transient requirement can be estimated using Equation 15:

Equation 15. TPS61378-Q1

where

  • ΔISTEP is the transient load current step
  • ΔVTRAN is the allowed voltage dip for the load current step
  • ƒBW is the control loop bandwidth (that is, the frequency where the control loop gain crosses zero)

For the output capacitor on the OUT pin, the effective capacitance is recommended between 0.22 μF to 1 μF.

Take care when evaluating the derating of a ceramic capacitor under the DC bias. Ceramic capacitors can derate by as much as 70% of the capacitance at the respective rated voltage. Therefore, enough margins on the voltage rating must be considered to ensure adequate capacitance at the required output voltage.