SLVSA67F February   2010  – April 2020 TPS62400-Q1 , TPS62402-Q1 , TPS62404-Q1 , TPS62405-Q1

UNLESS OTHERWISE NOTED, this document contains PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
    1.     Device Images
      1.      Simplified Schematic
      2.      TPS62402-Q1 Efficiency versus Output Current, VOUT1 and VOUT2
  4. Revision History
  5. Device Comparison Table
  6. Pin Configuration and Functions
    1.     Pin Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Timing Requirements
    7. 7.7 Switching Characteristics
    8. 7.8 Typical Characteristics
  8. Parameter Measurement Information
  9. Detailed Description
    1. 9.1 Overview
      1. 9.1.1 Converter 1
      2. 9.1.2 Converter 2
    2. 9.2 Functional Block Diagram
    3. 9.3 Feature Description
      1. 9.3.1 Enable
      2. 9.3.2 DEF_1 Pin Function
      3. 9.3.3 180° Out-of-Phase Operation
      4. 9.3.4 Short-Circuit Protection
      5. 9.3.5 Thermal Shutdown
      6. 9.3.6 EasyScale Interface: One-Pin Serial Interface for Dynamic Output-Voltage Adjustment
        1. 9.3.6.1 General
        2. 9.3.6.2 Protocol
    4. 9.4 Device Functional Modes
      1. 9.4.1 Power-Save Mode
        1. 9.4.1.1 Dynamic Voltage Positioning
        2. 9.4.1.2 Soft Start
        3. 9.4.1.3 100% Duty-Cycle Low-Dropout Operation
        4. 9.4.1.4 Undervoltage Lockout
      2. 9.4.2 Mode Selection
    5. 9.5 Programming
      1. 9.5.1 Addressable Registers
        1. 9.5.1.1 Bit Decoding
        2. 9.5.1.2 Acknowledge
        3. 9.5.1.3 Mode Selection
  10. 10Application and Implementation
    1. 10.1 Application Information
    2. 10.2 Typical Application
      1. 10.2.1 Design Requirements
      2. 10.2.2 Detailed Design Procedure
        1. 10.2.2.1 Output Voltage Setting
          1. 10.2.2.1.1 Converter 1 Adjustable Default Output-Voltage Setting: TPS62400-Q1
          2. 10.2.2.1.2 Converter 1 Fixed Default Output-Voltage Setting (TPS62402-Q1, TPS62404-Q1, and TPS62405-Q1)
          3. 10.2.2.1.3 Converter 2 Adjustable Default Output-Voltage Setting (TPS62400-Q1):
          4. 10.2.2.1.4 Converter 2 Fixed Default Output-Voltage Setting
        2. 10.2.2.2 Output Filter Design (Inductor and Output Capacitor)
          1. 10.2.2.2.1 Inductor Selection
          2. 10.2.2.2.2 Output-Capacitor Selection
          3. 10.2.2.2.3 Input Capacitor Selection
      3. 10.2.3 Application Curves
    3. 10.3 System Examples
  11. 11Power Supply Recommendations
  12. 12Layout
    1. 12.1 Layout Guidelines
    2. 12.2 Layout Example
  13. 13Device and Documentation Support
    1. 13.1 Device Support
      1. 13.1.1 Third-Party Products Disclaimer
    2. 13.2 Related Links
    3. 13.3 Support Resources
    4. 13.4 Trademarks
    5. 13.5 Electrostatic Discharge Caution
    6. 13.6 Glossary
  14. 14Mechanical, Packaging, and Orderable Information

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ
発注情報

Overview

The TPS62400-Q1 device includes two synchronous step-down converters. The converters operate with typically 2.25-MHz fixed-frequency pulse-width modulation (PWM) at moderate to heavy load currents. With the power-safe mode enabled, the converters automatically enter power-save mode at light load currents and operate in PFM (pulse frequency modulation).

During PWM operation, the converters use a unique fast-response voltage-mode controller scheme with input-voltage feedforward to achieve good line and load regulation, allowing the use of small ceramic input and output capacitors. At the beginning of each clock cycle initiated by the clock signal, the P-channel MOSFET switch turns on and the inductor current ramps up until the comparator trips and the control logic turns off the switch.

Each converter integrates two current limits, one in the P-channel MOSFET and another one in the N-channel MOSFET. When the current in the P-channel MOSFET reaches its current limit, the P-channel MOSFET turns off and the N-channel MOSFET turns on. If the current in the N-channel MOSFET is above the N-MOS current limit threshold, the N-channel MOSFET remains on until the current drops below its current limit.

The two DC-DC converters operate synchronized to each other. A 180° phase shift between converter 1 and converter 2 decreases the input rms current.