SLVS844A September   2008  – June 2015 TPS65055

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Dissipation Ratings
    7. 6.7 Typical Characteristics
  7. Parameter Measurement Information
  8. Detailed Description
    1. 8.1 Overview
      1. 8.1.1 DCDC1 Converter
      2. 8.1.2 DCDC2 Converter
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Power Save Mode
        1. 8.3.1.1 Dynamic Voltage Positioning
        2. 8.3.1.2 Soft Start
        3. 8.3.1.3 100% Duty Cycle Low Dropout Operation
        4. 8.3.1.4 Undervoltage Lockout
      2. 8.3.2 Enable
      3. 8.3.3 Discharge
      4. 8.3.4 RST and DPD
      5. 8.3.5 Short-Circuit Protection
      6. 8.3.6 Thermal Shutdown
      7. 8.3.7 LDO1 to LDO4
        1. 8.3.7.1 Default Voltage Setting for LDOs and DCDC1
    4. 8.4 Device Functional Modes
    5. 8.5 Programming
      1. 8.5.1 Interface Specification
        1. 8.5.1.1 Serial Interface
    6. 8.6 Register Maps
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
        1. 9.2.2.1 Output Voltage Setting
          1. 9.2.2.1.1 Converter 1 (DCDC1)
          2. 9.2.2.1.2 Converter 2 (DCDC2)
        2. 9.2.2.2 Output Filter Design (Inductor and Output Capacitor)
          1. 9.2.2.2.1 Inductor Selection
          2. 9.2.2.2.2 Output Capacitor Selection
          3. 9.2.2.2.3 Input Capacitor Selection
      3. 9.2.3 Application Curves
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Device Support
      1. 12.1.1 Third-Party Products Disclaimer
    2. 12.2 Community Resources
    3. 12.3 Trademarks
    4. 12.4 Electrostatic Discharge Caution
    5. 12.5 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ
発注情報

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted) (1)
MIN MAX UNIT
Input voltage range on all pins except A/PGND, EN_LDO1 pins with respect to AGND –0.3 7 V
Input voltage range on EN_LDO1 pins with respect to AGND –0.3 VCC+0.5 V
Output voltage range on LDO1, LDO2, LDO3, LDO4 pins with respect to AGND –0.3 4 V
Current at VINDCDC1/2, L1, PGND1, L2, PGND2 1800 mA
Current at all other pins 1000 mA
Continuous total power dissipation See Dissipation Ratings
TA Operating free-air temperature –40 85 °C
TJ Maximum junction temperature 125 °C
Lead temperature 1,6 mm (1/16-inch) from case for 10 seconds 260 °C
Tst Storage temperature –65 150 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. This device contains circuits to protect its inputs and outputs against damage due to high static voltages or electrostatic fields. These circuits have been qualified to protect this device against electrostatic discharges; HBM according to EIA/JESD22-A114-B: 1.5 kV; and CDM according EIA/JESD22C101C: 500 V, however, it is advised that precautions should be taken to avoid application of any voltage higher than maximum-rated voltages to these high-impedance circuits. During storage or handling, the device leads should be shorted together or the device should be placed in conductive foam. In a circuit, unused inputs should always be connected to an appropriated logic voltage level, preferably either VCC or ground. Specific guidelines for handling devices of this type are contained in the publication Guidelines for Handling Electrostatic-Discharge-Sensitive (ESDS) Devices and Assemblies available from Texas Instruments.

6.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±2000 V
Charged device model (CDM), per JEDEC specification JESD22-C101(2) ±1000
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)
MIN NOM MAX UNIT
VINDCDC1/2 Input voltage range for step-down converters 2.5 4 6 V
VDCDC1 Output voltage range for VDCDC1 step-down converter 0.6 VINDCDC1 V
VDCDC2 Output voltage range for VDCDC2 step-down converter 0.6 VINDCDC2 V
VINLDO1, VINLDO2, VINLDO3/4 Input voltage range for LDOs 1.5 6.5 V
VLDO1-3 Output voltage range for LDO1 and LDO3 0.8 2.8 V
VLDO2-4 Output voltage range for LDO2 and LDO4 1 3 V
IOUTDCDC1 Output current at L1 600 mA
L1 Inductor at L1(1) 1.5 2.2 μH
CINDCDC1/2 Input capacitor at VINDCDC1/2(1) 22 μF
COUTDCDC1 Output capacitor at VDCDC1(1) 10 22 μF
IOUTDCDC2 Output current at L2 600 mA
L2 Inductor at L2(1) 1.5 2.2 μH
COUTDCDC2 Output capacitor at VDCDC2(1) 10 22 μF
CVCC Input capacitor at VCC (1) 1 μF
Cin1-2 Input capacitor at VINLDO1/2(1) 2.2 μF
Cin3-4 Input capacitor at VINLDO3/4(1) 2.2 μF
COUT1-2 Output capacitor at VLDO1-4(1) 2.2 μF
ILDO1,2 Output current at VLDO1,2 400 mA
ILDO3,4 Output current at VLDO3,4 200 mA
TA Operating ambient temperature –40 85 °C
TJ Operating junction temperature –40 125 °C
RCC Resistor from battery voltage to Vcc used for filtering(2) 1 10 Ω
(1) See Application and Implementation for more details.
(2) Up to 2 mA can flow into Vcc when both converters are running in PWM, this resistor causes the UVLO threshold to be shifted accordingly.

6.4 Thermal Information

THERMAL METRIC(1) TPS65055 UNIT
RSM [VQFN]
32 PINS
RθJA Junction-to-ambient thermal resistance 37.2 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 30.1 °C/W
RθJB Junction-to-board thermal resistance 7.8 °C/W
ψJT Junction-to-top characterization parameter 0.4 °C/W
ψJB Junction-to-board characterization parameter 7.6 °C/W
RθJC(bot) Junction-to-case (bottom) thermal resistance 2.4 °C/W
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

6.5 Electrical Characteristics

VIN = 3.6 V, EN = VIN, MODE = GND, L = 2.2 μH, COUT = 22 μF, TA = –40°C to 85°C, Typical values are at TA = 25°C (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
SUPPLY CURRENT
Vcc Input voltage range 2.5 6 V
IQ Operating quiescent current
Total current into VCC, VINDCDC1/2, VINLDO1, VINLDO2, VINLDO3/4
One converter, IOUT = 0 mA. PFM mode enabled; device not switching, EN_DCDC1 = VIN or EN_DCDC2 = VIN;
EN_LDO1 = EN_LDO2 = EN_LDO3/4 = GND
30 40 μA
Two converters, IOUT = 0 mA, PFM mode device not switching,
EN_DCDC1 = VIN and EN_DCDC2 = VIN;
EN_LDO1 = EN_LDO2 = EN_LDO3/4 = GND
40 55 μA
One converter, IOUT = 0 mA, PFM mode enabled; device not switching, EN_DCDC1 = VIN or EN_DCDC2 = VIN;
EN_LDO1 = EN_LDO2 = EN_LDO3 = EN_LDO4 = VIN
190 260 μA
IQ Operating quiescent current into VCC One converter, IOUT = 0 mA,
Switching with no load, PWM operation EN_DCDC1 = VIN or EN_DCDC2 = VIN;
EN_LDO1 = EN_LDO2 = EN_LDO3/4 = GND
0.85 mA
Two converters, IOUT = 0 mA,
Switching with no load, PWM operation EN_DCDC1 = VIN AND EN_DCDC2 = VIN;
EN_LDO1 = EN_LDO2 = EN_LDO3/4 = GND
1.25 mA
I(SD) Shutdown current EN_DCDC1 = EN_DCDC2 = GND
EN_LDO1 = EN_LDO2 = EN_LDO3 = EN_LDO4 = GND
18 22 μA
V(UVLO) Undervoltage lockout threshold for DCDC converters and LDOs Voltage at VCC 1.8 2 V
EN_DCDC1, EN_DCDC2, DEFDCDC2, DEFLDO1, DEFLDO2, EN_LDO1, EN_LDO2, EN_LDO3, EN_LDO4
VIH High-level input voltage, SDAT, SCLK,
EN_DCDC1, EN_DCDC2, DEFDCDC2, EN_LDO1, EN_LDO2, EN_LDO3, EN_LDO4
1.2 VCC V
VIL Low-level input voltage SDAT, SCLK,
EN_DCDC1, EN_DCDC2, EN_LDO1, EN_LDO2, EN_LDO3, EN_LDO4, DEFDCDC2
0 0.4 V
IIN Input bias current SDAT, SCLK,
EN_DCDC1, EN_DCDC2, DEFDCDC2, DEFLDO1, DEFLDO2, EN_LDO1, EN_LDO2, EN_LDO3, EN_LDO4
0.01 1 μA
VIH DEFLDO1, DEFLDO2 VCC = 2.5 V 1.0 V
VIL DEFLDO1, DEFLDO2 VCC = 6.5 V 0.38 V
RPD Pulldown resistor at DEFLDO1, DEFLDO2 for LOW signal Pulled to GND 1
RPU Pullup resistor at DEFLDO1, DEFLDO2 for HIGH signal Pulled to VCC 1
RGNDopen Resistance at DEFLDO1, DEFLDO2 to GND to detect open state 10
RVCCopen Resistance at DEFLDO1, DEFLDO2 to Vcc to detect open state 20
POWER SWITCH
rDS(on) P-channel MOSFET on resistance DCDC1, DCDC2 VINDCDC1/2 = 3.6 V 280 630
VINDCDC1/2 = 2.5 V 400
ILD_PMOS P-channel leakage current VDS = 6 V 1 μA
rDS(on) N-channel MOSFET on resistance DCDC1, DCDC2 VINDCDC1/2 = 3.6 V 220 450
VINDCDC1/2 = 2.5 V 320
ILK_NMOS N-channel leakage current VDS = 6 V 7 10 μA
I(LIMF) Forward current limit PMOS (high-side) and NMOS (low side) DCDC1 2.5 V ≤ VIN ≤ 6 V 0.85 1.0 1.15 A
DCDC2 0.85 1.0 1.15
TSD Thermal shutdown Increasing junction temperature 150 °C
Thermal shutdown hysteresis Decreasing junction temperature 20 °C
OSCILLATOR
fSW Oscillator frequency 2.025 2.25 2.475 MHz
OUTPUT
VOUT Output voltage range 0.8 VIN V
VOUT DC output voltage accuracy DCDC1, DCDC2(1) VIN = 2.5 V to 6 V, Mode = GND,
PFM operation, 0 mA < IOUT < IOUTMAX
–1.5% 0% 3.5%
VIN = 2.5 V to 6 V, Mode = VIN,
PWM operation, 0 mA < IOUT < IOUTMAX
–1.5% 0% 1.5%
ΔVOUT Power save mode ripple voltage(2) IOUT = 1 mA, PFM = GND, Bandwidth = 20 MHz 25 mVPP
tStart Start-up time Time from active EN to start switching 170 μs
tRamp VOUT Ramp up time Time to ramp from 5% to 95% of VOUT 750 μs
RDIS Internal discharge resistor at L1, L2 350 Ω
VOL RST, DPD, discharge output low voltage IOL = 1 mA, Vthreshold < 0.8 V 0.3 V
IOL RST, DPD sink current 1 mA
discharge sink current 10 mA
RST, DPD, discharge output leakage current Vthreshold > 0.8 V, RST and DPD outputs turned off (internal NMOS in high impedance state) 0.01 1 μA
Vth Vthreshold voltage Voltage rising 0.78 0.8 0.82 V
Hysteresis on threshold Voltage decreasing 80 mV
VLDO1, VLDO2, VLDO3 and VLDO4 LOW DROPOUT REGULATORS
VINLDO Input voltage range for LDO1, LDO2, LDO3, LDO4 1.5 6.5 V
VLDO1 LDO1 output voltage range 0.8 2.8 V
VLDO2 LDO2 output voltage range 1.2 3 V
VLDO3 LDO3 output voltage 0.8 2.8 V
VLDO4 LDO4 output voltage range 1.2 3 V
IO Maximum output current for LDO1,LDO2 400 mA
Maximum output current for LDO3, LDO4 200
I(SC) LDO1 and LDO2 short-circuit current limit VLDO1 = GND, VLDO2 = GND 800 mA
LDO3 and LDO4 short-circuit current limit VLDO3 = GND, VLDO4 = GND 400 mA
Dropout voltage at LDO1 IO = 250 mA, VINLDO = 1.8 V 600 mV
Dropout voltage at LDO2 IO = 400 mA, VINLDO = 3.3 V 450 mV
Dropout voltage at LDO3, LDO4 IO = 200 mA, VINLDO = 1.8 V 280 mV
Output voltage accuracy for LDO1, LDO2, LDO3 IO = 10 mA –2% 1%
Leakage current from VINLDOx to VLDOx LDO enabled, VINLDOx = 6.5 V; VO = 1.0 V, T = 140°C 3 μA
Output voltage accuracy for LDO1, LDO2, LDO3, LDO4 IO = 10 mA –2% 1%
Line regulation for LDO1, LDO2, LDO3, LDO4 VINLDO1,2 = VLDO1,2 + 0.5 V (minimum 2.5 V) to 6.5 V,
VINLDO3,4 = VLDO3,4 + 0.5 V (minimum 2.5 V) to 6.5 V,
IO = 10 mA
–1% 1%
Load regulation for LDO1, LDO2, LDO3, LDO4 IO = 0mA to 400 mA for LDO1, LDO2
IO = 0mA to 200 mA for LDO3, LDO4
–1% 1%
Regulation time for LDO1, LDO2, LDO3, LDO4 Load change from 10% to 90% 10 μs
PSRR Power supply rejection ratio f = 10 kHz; IO = 50 mA; VI = VO + 1 V 70 dB
RDIS Internal discharge resistor at VLDO1, VLDO2, VLDO3, VLDO4 350 Ω
TSD Thermal shutdown Increasing junction temperature 140 °C
Thermal shutdown hysteresis Decreasing junction temperature 20 °C
(1) Output voltage specification does not include tolerance of external voltage programming resistors.
(2) In power save mode, PWM operation is typically entered at IPSM = VIN/32 Ώ.

6.6 Dissipation Ratings

PACKAGE RθJA TA ≤ 25°C
POWER RATING
DERATING FACTOR
ABOVE TA = 25°C
TA = 70°C
POWER RATING
TA = 85°C
POWER RATING
RSM(1) 58 K/W 1.7 W 17 mW/K 0.95 W 0.68 W
(1) The thermal resistance junction-to-case of the RSM package is 4 K/W measured on a high K board.

6.7 Typical Characteristics

Table 1. Table Of Graphs

FIGURE
η Efficiency DCDC1 (VO = 2.1 V) vs Load current / PWM mode Figure 1
η Efficiency DCDC1 (VO = 2.1 V) vs Load current / PFM mode Figure 2
η Efficiency DCDC2 (VO = 1.575 V) vs Load current / PWM mode Figure 3
η Efficiency DCDC2 (VO = 1.575 V) vs Load current / PFM mode Figure 4
η Efficiency DCDC2 (VO = 1.2 V) vs Load current / PWM mode Figure 5
η Efficiency DCDC2 (VO = 1.2 V) vs Load current / PFM mode Figure 6
Output voltage ripple in PFM mode Scope plot Figure 7
Output voltage ripple in PWM mode Scope plot Figure 8
Startup timing DCDC1, DCDC2, LDO1 Scope plot Figure 9
Startup timing LDO1, LDO2, LDO3, LDO4 Scope plot Figure 10
Load transient response DCDC1; PWM Scope plot Figure 11
Load transient response DCDC1; PFM Scope plot Figure 12
Load transient response DCDC2; PWM Scope plot Figure 13
Load transient response DCDC2;PFM Scope plot Figure 14
Line transient response DCDC1 (VO = 2.1 V) Scope plot Figure 15
Line transient response DCDC2 (VO = 1.2 V) Scope plot Figure 16
Load transient response LDO1 Scope plot Figure 17
Load transient response LDO4 Scope plot Figure 18
Line transient response LDO1 Scope plot Figure 19
TPS65055 eff_io_lvs844.gifFigure 1. Efficiency DCDC1 (VO = 2.1 V) vs Load Current / PWM Mode
TPS65055 eff3_io_lvs844.gifFigure 3. Efficiency DCDC2 (VO = 1.575 V) vs Load Current / PWM Mode
TPS65055 eff5_io_lvs844.gifFigure 5. Efficiency DCDC2 (VO = 1.2 V) vs Load Current / PWM Mode
TPS65055 pfm_ovr_lvs844.gif
Figure 7. Output Voltage Ripple in PFM Mode
TPS65055 startup_lvs844.gif
Figure 9. Startup Timing DCDC1, DCDC2, and LDO1
TPS65055 pwm_ltr_lvs844.gif
Figure 11. Load Transient Response DCDC1; PWM
TPS65055 pwm2_ltr_lvs844.gif
Figure 13. Load Transient Response DCDC2; PWM
TPS65055 pwm_lin_lvs844.gif
Figure 15. Line Transient Response DCDC1 (VO = 2.1 V)
TPS65055 ldo1_lvs844.gif
Figure 17. Load Transient Response LDO1
TPS65055 line_ldo1_lvs844.gif
Figure 19. Line Transient Response LDO1
TPS65055 eff2_io_lvs844.gifFigure 2. Efficiency DCDC1 (VO = 2.1 V) vs Load Current / PFM Mode
TPS65055 eff4_io_lvs844.gifFigure 4. Efficiency DCDC2 (VO = 1.575 V) vs Load Current / PFM Mode
TPS65055 eff6_io_lvs844.gifFigure 6. Efficiency DCDC2 (VO = 1.2 V) vs Load Current / PFM Mode
TPS65055 pwm_ovr_lvs844.gif
Figure 8. Output Voltage Ripple in PWM Mode
TPS65055 startup2_lvs844.gif
Figure 10. Startup Timing LDO1, LDO2, LDO3, and LDO4
TPS65055 pfm_ltr_lvs844.gif
Figure 12. Load Transient Response DCDC1; PFM
TPS65055 pfm2_ltr_lvs844.gif
Figure 14. Load Transient Response DCDC2; PFM
TPS65055 pwm2_lin_lvs844.gif
Figure 16. Line Transient Response DCDC2 (VO = 1.2 V)
TPS65055 ldo4_lvs844.gif
Figure 18. Load Transient Response LDO4