SLVSBO6B January   2013  – July 2015 TPS65090

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  ESD Ratings
    3. 6.3  Recommended Operating Conditions
    4. 6.4  Thermal Information
    5. 6.5  Electrical Characteristics - Power Path Control
    6. 6.6  Electrical Characteristics - Charger
    7. 6.7  Electrical Characteristics - DC-DC Converters
    8. 6.8  Electrical Characteristics - Linear Regulators
    9. 6.9  Electrical Characteristics - Load Switches
    10. 6.10 Electrical Characteristics - Control
    11. 6.11 Timing Requirements - I2C Interface
    12. 6.12 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Always On LDOs
      2. 7.3.2 Power Path Control
      3. 7.3.3 Supply Status Outputs
      4. 7.3.4 Charger
      5. 7.3.5 DC-DC Converters
      6. 7.3.6 Load Switches
      7. 7.3.7 ADC
      8. 7.3.8 Protection
      9. 7.3.9 Interrupts
    4. 7.4 Device Functional Modes
    5. 7.5 Programming
      1. 7.5.1 I2C Interface
        1. 7.5.1.1 F/S-Mode Protocol
        2. 7.5.1.2 H/S-Mode Protocol
    6. 7.6 Register Maps
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Applications
      1. 8.2.1 Front-End PMU Application
        1. 8.2.1.1 Design Requirements
        2. 8.2.1.2 Detailed Design Procedure
          1. 8.2.1.2.1 Programming the Converter or Charger Output Voltage
          2. 8.2.1.2.2 Programming Input DPM Current and Charge Current
          3. 8.2.1.2.3 Output Filter Design (Inductor and Output Capacitor)
          4. 8.2.1.2.4 Inductor Selection
          5. 8.2.1.2.5 Capacitor Selection
            1. 8.2.1.2.5.1 Input Capacitor
            2. 8.2.1.2.5.2 DC-DC Converter and Charger Bootstrap Capacitors
            3. 8.2.1.2.5.3 DC-DC Converter and Charger Output Capacitors
            4. 8.2.1.2.5.4 LDO Output Capacitors
            5. 8.2.1.2.5.5 Load Switches Output Capacitors
          6. 8.2.1.2.6 Charger Battery Temperature Sensing
          7. 8.2.1.2.7 Reverse Voltage Protection
          8. 8.2.1.2.8 AC Switches
          9. 8.2.1.2.9 Battery Switches
        3. 8.2.1.3 Application Curves
      2. 8.2.2 DC-DC Converters
      3. 8.2.3 Charger
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
    3. 10.3 Thermal Considerations
  11. 11Device and Documentation Support
    1. 11.1 Device Support
      1. 11.1.1 Third-Party Products Disclaimer
    2. 11.2 Documentation Support
      1. 11.2.1 Related Documentation
    3. 11.3 Community Resources
    4. 11.4 Trademarks
    5. 11.5 Electrostatic Discharge Caution
    6. 11.6 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ
発注情報

10 Layout

10.1 Layout Guidelines

For all switching power supplies, the layout is an important step in the design, especially at high peak currents and high switching frequencies. If the layout is not carefully done, the regulator could show stability problems as well as EMI problems. Therefore, use wide and short traces for the main current path and for the power ground tracks. The input capacitor, output capacitor, and the inductor should be placed as close as possible to the IC. Use a common ground node for power ground and a different one for control ground to minimize the effects of ground noise. Connect these ground nodes at any place close to one of the ground pins of the IC.

The feedback divider should be placed as close as possible to the control ground pin of the IC. To lay out the control ground, TI recommends short traces, as well as separation from the power ground traces. This avoids ground shift problems, which can occur due to superimposition of power ground current and control ground current.

A complete layout example can be found in the TPS65090EVM User's Guide (SLVU778).

10.2 Layout Example

TPS65090 Layout_Example.gifFigure 71. DCDC1 Layout Example

10.3 Thermal Considerations

Implementation of integrated circuits in low-profile and fine-pitch surface-mount packages typically requires special attention to power dissipation. Many system-dependent issues such as thermal coupling, airflow, added heat sinks and convection surfaces, and the presence of other heat-generating components affect the power dissipation limits of a given component.

Three basic approaches for enhancing thermal performance are listed below.

  • Improving the power dissipation capability of the PCB design.
  • Improving the thermal coupling of the component to the PCB by soldering the PowerPAD.
  • Introducing airflow in the system.

For more details on how to use the thermal parameters in the dissipation ratings table, see the Thermal Characteristics Application Note (SZZA017) and the IC Package Thermal Metrics Application Note (SPRA953).