SLVSBO3A December 2013 – December 2015 TPS657120
PRODUCTION DATA.
MIN | MAX | UNIT | |||
---|---|---|---|---|---|
Voltage | all pins except A/PGND pins and pins listed below with respect to AGND | –0.3 | 6 | V | |
VLDO1, VLDO2, VDDIO with respect to AGND | –0.3 | 3.6 | V | ||
pin VDCDC3 with respect to AGND | –0.3 | 5.5 | V | ||
pins SDATA, SCLK, DCDC3_SEL , GPIO_0, GPIO_1, CLK_REQ1, CLK_REQ2 , with respect to AGND | –0.3 | VDDIO + 0.3 | V | ||
Current | all non power pins | 5 | mA | ||
power pins | 2 | A | |||
TA | Operating free-air temperature | –40 | 85 | °C | |
TJ | Maximum junction temperature | 125 | °C | ||
Tstg | Storage temperature | –65 | 150 | °C |
VALUE | UNIT | |||
---|---|---|---|---|
V(ESD) | Electrostatic discharge | Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins(1) | 2000 | V |
Charged device model (CDM), per JEDEC specification JESD22-C101, all pins(2) | 500 |
MIN | NOM | MAX | UNIT | |||
---|---|---|---|---|---|---|
DCDC CONVERTERS | ||||||
VINDCDC1, VINDCDC2, VINDCDC3 |
Input voltage range for step-down converter DCDC1, DCDC2, DCDC3 | 2.8 | 5.5 | V | ||
Output voltage range for step-down converter | DCDC1, DCDC2 | 0.8 | 3.3 | V | ||
DCDC3 | 0.1 | 3.6 | V | |||
L1, L2 | Inductance at L1, L2 | 1 | 2.2 | 2.9 | μH | |
L3 | Inductance at L3 | 1 | 1.5 | 2.2 | μH | |
CVINDCDC1/2 | Input capacitance at VINDCDC1/2 (1) | 4.7 | 10 | μF | ||
CVINDCDC3 | Input capacitance at VINDCDC3 (1) | 10 | 22 | μF | ||
COUTDCDC1,2 | Output capacitance at DCDC1 and DCDC2 (1) | 4.7 | 10 | 22 | μF | |
COUTDCDC3 | Output capacitance at DCDC3 (1) | 2.0 | 6 | 12 | μF | |
LDOs; GENERIC | ||||||
VINLDO1 | Input voltage range for LDO1 | 2.0 | 5.5 | V | ||
VINLDO2(2) | Input voltage for LDO2(3) | 2.8 | 5.5 | V | ||
VLDO1, VLDO2 | Output voltage for LDOs | 1.2 | 3.4 | V | ||
CINLDO1
CINLDO2 |
Input capacitance on LDO supply pins (1) | 0.5 | μF | |||
CoutLDO1,
CoutLDO2 |
Output capacitance on LDO1, LDO2 (1) | 1 | 4.7 | μF | ||
VVDDIO | for RFFE interface at 1.2 V or 1.8 V | 1.1 | 1.95 | V | ||
CVDDIO | Input capacitance on VDDIO | 100 | nF | |||
C(C2V5) | Capacitance at internal supply at pin C2V5 | 0.5 | 1 | 10 | μF | |
C(VREF1V0) | Bypass capacitance at internal reference VREF1V0 | 47 | 100 | 220 | nF | |
TA | Operating ambient temperature | –40 | 85 | °C | ||
TJ | Operating junction temperature | –40 | 125 | °C |
THERMAL METRIC(1) | TPS657120 | UNIT | |
---|---|---|---|
YFF (DSBGA) | |||
30 PINS | |||
RθJA | Junction-to-ambient thermal resistance | 58.8 | °C/W |
RθJC(top) | Junction-to-case (top) thermal resistance | 0.3 | °C/W |
RθJB | Junction-to-board thermal resistance | 27.0 | °C/W |
ψJT | Junction-to-top characterization parameter | 1.4 | °C/W |
ψJB | Junction-to-board characterization parameter | 26.9 | °C/W |
PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |
---|---|---|---|---|---|---|
ISB | Standby supply current | PWRON=LOW; total current in STANDBY state into pins VINDCDC1/2, VINDCDC3 and VIN_ANA | 55 | μA | ||
IQ | Quiescent supply current | PWRON=HIGH, LDOs and DCDC converters =OFF | 60 | μA | ||
IQ | Quiescent supply current | PWRON=HIGH, LDO1 and LDO2 and DCDC1 and DCDC2 = enabled in normal mode | 170 | μA |
PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |
---|---|---|---|---|---|---|
VIN | Input voltage | 2.8 | 5.5 | V | ||
VDCDC1
VDCDC2 |
DCDCx output voltage | 25-mV steps up to 2.2 V; 50-mV steps above 2.2 V | 0.8 | 3.3 | V | |
VDCDC1
VDCDC2 |
Default output voltage | VDCDC1 | 1.7 | V | ||
VDCDC2 | 2.65 | |||||
IOUT(DCDCx) | Continuous output current | DCDC1 (VINDCDC1 ≥ 2.8 V) | 300 | mA | ||
DCDC2 (VINDCDC2 ≥ 2.8 V) | 250 | |||||
IQ | Quiescent current | ILOAD = 0 mA, DCDCx_MODE = 0, Device not switching; for each DCDC1 and DCDC2 | 16 | 25 | μA | |
ILOAD = 0 mA, DCDCx_MODE = 1, Device switching; for each DCDC1 and DCDC2 | 3.5 | mA | ||||
VDCDC1/2 | Accuracy | DCDCx_MODE = 1, VIN = 3.0 V to 5.5 V, ILOAD = 0 mA, tolerance is ±2% or ±25 mV whatever is larger | –2% | 2% | ||
DCDCx_MODE = 0, VIN = 3.0 V to 5.5 V, ILOAD = 0 mA, +1% voltage scaling active | –3% | 1.25% | 3.5% | |||
Load regulation | DCDCx_MODE = 1, VIN = 3.0 V to 5.5 V; ILOAD = 25 mA to 225 mA; for DCDC1 and DCDC2 | 0.25 | %/A | |||
fSW | Switching frequency | DCDCx_MODE = 1, VIN = 3.0 V to 5.5 V | 1.9 | 2.4 | 2.6 | MHz |
RDS(ON) | High-side FET On-resistance | For DCDC1 and DCDC2 with VINDCDCx = 3.6 V, D = 100% | 250 | 400 | mΩ | |
RDS(ON) | Low-side FET On-resistance | For DCDC1 and DCDC2 with VINDCDCx = 3.6 V, D = 100% | 220 | 350 | mΩ | |
ILK_HS | High-side FET leakage current | TJ = 85°C; DCDC1, DCDC2; VINDCDC1 = VINDCDC2 = 5.5 V | 2 | μA | ||
ILK_LS | Low-side FET leakage current | TJ = 85°C; DCDC1, DCDC2; VINDCDC1 = VINDCDC2 = 5.5 V | 3 | μA | ||
IHS_LIMF | High-side forward current limit | 2.9 V ≤ VIN_DCDC1 ≤ 5.5 V; for DCDC1 | 500 | 650 | 800 | mA |
ILS_LIMF | Low-side forward current limit | 2.9 V ≤ VIN_DCDC1 ≤ 5.5 V; for DCDC1 | 500 | 650 | 800 | mA |
IHS_LIMF | High-side forward current limit | 2.9 V ≤ VIN_DCDC2 ≤ 5.5 V; for DCDC2 | 425 | 600 | 775 | mA |
ILS_LIMF | Low-side forward current limit | 2.9 V ≤ VIN_DCDC2 ≤ 5.5 V; for DCDC2 | 425 | 600 | 775 | mA |
DCDC1, DCDC2 output voltage ripple | VIN = 3.6 V; VOUT = 1.7 V to 2.65 V; Io = 10 mA to 300 mA; L = 1.5uH, RSL = 50 mR; Co = 10 µF | 10 | 25 | mVpp | ||
Efficiency | VINDCDCx = 3.7 V, Vo = 1.7 V or Vo = 2.65 V; Io = 80 mA to 150 mA | 88% | 93% | |||
VINDCDCx = 3.7 V, Vo = 1.7 V or Vo = 2.65 V; Io = 300 µA | 80% | |||||
VINDCDCx = 3.7 V, Vo = 1.7 V or Vo = 2.65 V; Io = 100 µA | 45% | |||||
Pulse skipping threshold | Output current when device switches from PFM to PWM automatically; VIN = 3.6 V, VOUT = 1.7 V | 140 | mA | |||
output current when device switches from PFM to PWM automatically; VIN = 3.6 V, VOUT = 2.65 V | 60 | |||||
PSRR | Power supply rejection ratio | VIN = 3.6 V, ILOAD = 150 mA, 10 Hz < f < 10 kHz, Vo = 1.7 V and Vo = 2.65 V | 40 | dB | ||
Output noise | VIN = 3.6 V, ILOAD = 100 mA, Vo = 1.7 V and Vo = 2.65 V | μV/√Hz | ||||
1 kHz < f < 100 kHz | 2 | |||||
100 kHz < f < 1 MHz | 0.2 | |||||
1 MHz < f < 10 MHz; not including f(sw) | 0.1 | |||||
VDCDCPG-falling | Power good threshold | VDCDCx falling | VDCDCx –15% | VDCDCx – 7% | ||
VDCDCPG-rising | Power good threshold | VDCDCx rising | VDCDCx – 3% | |||
tStart | Start-up time | Time to start switching, measured from end of MIPI command enabling converter | 225 | μs | ||
tRamp | VOUT Ramp UP time | Time to ramp from 5% to 95% of VOUT | 200 | μs | ||
RDischarge | Discharge resistor | 250 | 400 | 600 | Ω |
PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |
---|---|---|---|---|---|---|
VIN | Input voltage | 2.8 | 5.5 | V | ||
VDCDC3 | DCDC3 output voltage | output voltage defined by internal resistor divider; DCDC3_CTRL:VCON = 0 | 0.8 | 3.60 | V | |
output voltage defined by VCON input; DCDC3_CTRL:VCON = 1 | 0.1 | 3.60 | ||||
IOUT(DCDC3) | Continuous output current | DCDC3 | 2200 | mA | ||
IQ | Quiescent current | ILOAD = 0 mA, DCDC3_MODE = 0, Device not switching | 26 | 46 | μA | |
ILOAD = 0 mA, DCDC3_MODE = 1, Device switching | 6 | mA | ||||
VDCDC3 | Accuracy; output voltage setting with register; DCDC3_CTRL:VCON = 0 | DCDC3_MODE = 1, ILOAD = 0 mA, TA = 25°C; COUT = 2 x 4.7 µF + 2.2 µF |
–2% | 2% | ||
DCDC3_MODE = 1, ILOAD = 0 mA, TA = –40 – 85°C; COUT = 2 x 4.7 µF + 2.2 µF |
–2.5% | 2.5% | ||||
DCDC3_MODE = 0, ILOAD = 0 mA, TA = 25°C; COUT = 2 x 4.7 µF + 2.2 µF the output voltage tolerance is ±3% or ±45 mV whichever is larger |
–3% | 3% | ||||
DCDC3_MODE = 0, ILOAD = 0 mA, TA = –40 – 85°C; COUT = 2 x 4.7 µF + 2.2 µF the output voltage tolerance is ±3% or ±45 mV whichever is larger |
–3% | 3% | ||||
Accuracy for VCON operation; DCDC3_CTRL:VCON = 1 | Vo = 0.1 V to 3.6 V; COUT = 2 x 4.7 µF + 2.2 µF; PWM mode forced automatically; accuracy in VCON mode is ±5% or ±25 mV, whichever is larger |
–5% | 5% | |||
fSW | Switching frequency | DCDC3_MODE = 1 or DCDC3_CTRL:VCON = 1 | 2100 | 2300 | 2700 | kHz |
RDS(ON) | High-side MOSFET on-resistance | VIN_DCDC3 = 3.6 V, 100% duty cycle | 75 | 120 | mΩ | |
Low-side MOSFET on-resistance | VIN_DCDC3 = 3.6 V, 0% duty cycle | 110 | 180 | mΩ | ||
ILK_HS | High-side leakage current | TJ = 85°C; VINDCDC3=4.2 V | 3 | μA | ||
ILK_LS | Low-side leakage current | TJ = 85°C; VINDCDC3=4.2 V | 3 | μA | ||
ILIM | High-side current limit | 2.9 V ≤ VIN_DCDC3 ≤ 5.5 V | 2400 | 3000 | 3600 | mA |
ILIM | Low-side current limit | 2.9 V ≤ VIN_DCDC3 ≤ 5.5 V | 2200 | 2800 | 3400 | mA |
ILIM | Low-side negative current limit | 2.9 V ≤ VIN_DCDC3 ≤ 5.5 V; EN_nILIM_xl=1 | 1000 | 1500 | 2000 | mA |
2.9 V ≤ VIN_DCDC3 ≤ 5.5 V; EN_nILIM_xl=0 | 200 | mA | ||||
Duty cycle | VIN = 3.6 V | 2% | 100% | |||
DCDC3 output voltage ripple | VIN = 5 V; VOUT = 3.4 V; Io=2 A; L=1.5 µH, ESR=90 mR; Co=10 µF | 10 | 50 | mVpp | ||
DCDC3 load transient response | VIN = 5 V; VOUT = 3.4 V; Io=200 mA to 1.8 A; L=1.5 µH, ESR=90 mR; Co=10 µF; dt=10 µs | 100 | mV | |||
Efficiency | VINDCDCx=3.7 V, Vo=3.4 V; Io=1500 mA | 80% | ||||
VINDCDCx=3.7 V, Vo=3.4 V; Io=400 mA | 90% | |||||
VINDCDCx=3.7 V, Vo=2.0 V; Io=10 mA | 80% | |||||
Output noise | VIN = 3.6 V, ILOAD = 100 mA, Vo=2.65 V | μV/√Hz | ||||
1 kHz < f < 100 kHz | 3 | |||||
100 kHz < f < 1 MHz | 0.2 | |||||
1 MHz < f < 10 MHz | 0.1 | |||||
VDCDCPG-falling | Power good threshold | VDCDCx falling | VDCDCx - 14% | VDCDCx - 7% | ||
VDCDCPG-rising | Power good threshold | VDCDCx rising | VDCDCx - 5% | |||
tStart | Start-up time | Time to start switching, measured from end of RFFE command enabling converter | 175 | μs | ||
tRamp | VOUT Ramp UP time | Time to ramp from 5% to 95% of VOUT ; DCDC3_CTRL:IMMEDIATE = 1; VOUT = 3.4 V | 30 | μs | ||
Rise and fall time | dVo=±1 V; Io=450 mA; Co=10 µF; DCDC3_SEL mode | 30 | μs | |||
Ramp time in VCON mode | 10 | μs | ||||
VCON input voltage | 0.2 | 2.1 | V | |||
VCON slew rate | 300 | mV/μs | ||||
VCON input resistance | 1 | MΩ | ||||
VCON gain | Typical adjustable range | 1.3 | 2.7 | |||
VCON offset | –350 | 0 | mV | |||
RDischarge | Discharge resistor | 250 | 400 | 500 | Ω | |
Voltage between VINDCDC3 and VDCDC3 | 5.5 | V | ||||
Bypass switch current limit | VINDCDCx= 2.8 V to 5.5 V; not tested in production | 2000 | 2500 | 3000 | mA | |
Bypass switch current limit response time | 10 | µs | ||||
Resistance from VINDCDC3 to VDCDC3 | Bypass switch closed; not including the parallel path through high side switch and inductor | 100 | 170 | mΩ | ||
Leakage current from VINDCDC3 to VDCDC3 | When bypass switch is open | 10 | µA | |||
Bypass switch over-voltage protection | Sensed at VDCDC3; bypass enabled bit is cleared when voltage is exceeded; rising edge | 4.0 | V | |||
Sensed at VDCDC3; bypass enabled bit is cleared when voltage is exceeded; falling edge | 3.7 |
PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |
---|---|---|---|---|---|---|
VIN | Input voltage | LDO1 | 2.0 | 5.5 | V | |
LDO2, analog supply voltage input | 2.8 | 5.5 | ||||
VLDOx | LDO output voltage for RF-LDOs | 50-mV steps | 1.2 | 3.4 | V | |
LDO voltage accuracy | ECO = 0 | –2% | 2% | |||
ECO = 1 | –5% | 5% | ||||
IOUT(LDOx) | LDO continuous output current | LDO1 | 10 | mA | ||
LDO2 | 10 | |||||
ISHORT(LDOx) | LDO current limit | LDO1 | 20 | 80 | mA | |
LDO2 | 20 | 80 | ||||
VDO(LDOx) | Dropout voltage (1) | IOUT(LDO1) = 10 mA; VINLDO1=2.0 V | 250 | mV | ||
IOUT(LDO2) = 10 mA; VINLDO2=3.0 V | 250 | |||||
Line regulation | VIN = VLDO + 0.5 V & ILOAD = 10 mA for LDO1 and for LDO2 | –1% | 1% | |||
Load regulation; ECO = 0 | LDO1 and LDO2: ILOAD = 50 µA to 10 mA | 40 | mV | |||
Load regulation; ECO = 1 | LDO1 and LDO2: ILOAD = 0 mA to 1 mA | –5% | 5% | |||
Line transient response | dV/dt = ±0.5 V/μs | –50 | 50 | mV | ||
Load transient response | for LDO1 and LDO2: dI/dt = 100 mA/μs; 1-mA to 10-mA load step | 50 | mV | |||
PSRR | Power supply rejection ratio | f = 10 Hz to 1 kHz, VIN - VOUT ≥ 0.5 V, ILOAD = 10 mA | 63 | dB | ||
Output voltage noise | f = 10 Hz to 100 kHz, VIN - VOUT ≥ 0.5 V , ILOAD = 10 mA | 30 | µVrms | |||
Iq | Quiescent current | ECO = 1; ILOAD ≤ 1 mA for LDO1, LDO2 | 16 | µA | ||
ECO = 0; ILOAD ≤ 10 mA for LDO1, LDO2 | 40 | µA | ||||
ECO exit time | Minimum wait time before the full current can be drawn after ECO is set 0 | 50 | µs | |||
tRamp | VOUT ramp up time | Time to ramp from 5% to 95% of VOUT ; IOUT = 10 mA; Co=4.7 µF; Vo=1.8 V |
850 | 1000 | µs | |
tRamp | VOUT ramp up time | Time to ramp from 5% to 95% of VOUT ; IOUT = 10 mA; Co=4.7 µF; Vo=2.8 V |
1000 | 1200 | µs | |
VLDOPG-falling | Power good threshold | VDCDCx falling | VLDOx - 14% | VLDOx - 7% | ||
VLDOPG-rising | Power good threshold | VDCDCx rising | VLDOx - 5% | |||
RDischarge | Discharge resistance at LDOx output | LDOx disabled | 200 | 325 | 450 | Ω |
PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | ||
---|---|---|---|---|---|---|---|
RFFE INTERFACE | |||||||
VVDDIO | VDDIO voltage | VDDIO = 1.2 V | 1.1 | 1.2 | 1.3 | V | |
VDDIO = 1.8 V | 1.65 | 1.8 | 1.95 | V | |||
IVIO-IN | I/O voltage average input current for SDATA, SCLK | VDDIO=1.8 V; average during a 26-MHz write | 1.25 | mA | |||
CL | Load capacitance | Half-speed readback; not including TPS657120 pin capacitance | 50 | pF | |||
VOL | Low level output voltage for SDATA, SCLK | IOL= 2 mA | 0 | 0.2 × VDDIO | V | ||
VOH | High level output voltage for SDATA, SCLK | IOH= –2 mA | 0.8 × VDDIO | VDDIO | V | ||
VTP | INPUT: Positive going threshold voltage | VDDIO = 1.2 V or 1.8 V | 0.4 × VDDIO | 0.7 × VDDIO | V | ||
VTN | INPUT: Negative going threshold voltage | VDDIO = 1.2 V | 0.28 × VDDIO | 0.6 × VDDIO | V | ||
VTN | INPUT: Negative going threshold voltage | VDDIO = 1.8 V | 0.3 × VDDIO | 0.6 × VDDIO | V | ||
VH | INPUT: Hysteresis voltage (VTP-VTN) | VDDIO = 1.2 V or 1.8 V | 0.1 × VDDIO | 0.4 × VDDIO | V | ||
VIORST | RFFE I/O voltage reset voltage level | RFFE interface is in reset when VDDIO is below that voltage | 0.95 | V | |||
IIH | SDATA = 0.8 x VDDIO | –2 | 10 | uA | |||
SCLK = 0.8 x VDDIO | –1 | 10 | |||||
IIL | SDATA = 0.2 x VDDIO | –2 | 5 | uA | |||
SCLK = 0.2 x VDDIO | –1 | 1 | |||||
GENERIC I/Os | |||||||
VIL | Low-level input voltage | PWRON | 0 | 0.4 | V | ||
GPIO_0, GPIO_1, CLK_REQ1, CLK_REQ2 , DCDC3_SEL; SDATA, SCLK | 0 | 0.3 × VDDIO | |||||
VIH | High-level input voltage | PWRON | 1.1 | Vcc | V | ||
GPIO_0, GPIO_1, CLK_REQ1, CLK_REQ2 , DCDC3_SEL, SDATA, SCLK | 0.7 × VDDIO | VDDIO | |||||
VOL | Low-level output voltage | IOL= 1 mA for VDDIO=1.8 V | 0 | 0.2 | V | ||
VOH | High-level output voltage | For pins configured as push-pull ouput to VDDIO; IOH= 1 mA for VDDIO=1.8 V | VDDIO - 0.2 | VDDIO | V | ||
For pins configured as open-drain ouput | Vcc | ||||||
IOL | Low-level output current Low-level output current | VDDIO ≥ 1.8 V | 1 | mA | |||
VDDIO = 1.2 V | 0.1 | ||||||
IOH | High-level output current | VDDIO ≥ 1.8 V | 1 | mA | |||
VDDIO = 1.2 V | 0.1 | ||||||
ILKG | Input leakage current | Input pins tied to VILor VIH | 0.2 | µA | |||
TdHL | CLK_REQ1, CLK_REQ2, DCDC3_SEL delay for HIGH to LOW change | 2 | µs | ||||
TdLH | CLK_REQ1, CLK_REQ2, DCDC3_SEL delay for LOW to HIGH change | 2 | µs | ||||
TdLH | PWRON delay for LOW to HIGH change | For TPS657120 in STANDBY mode going to ACTIVE | 4 | 30% | ms |
PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |
---|---|---|---|---|---|---|
Thermal shutdown temperature rising threshold | 136 | 148 | 160 | °C | ||
Thermal shutdown temperature hysteresis | Temperature falling | 20 | °C | |||
UVLO threshold | Supply voltage rising | 2.7 | V | |||
UVLO threshold | Supply voltage falling | 2.6 | V |
MIN | NOM | MAX | UNIT | |||
---|---|---|---|---|---|---|
fCLK | SCLK frequency | For write access | 0.032 | 26 | MHz | |
fCLK_HALF | SCLK half-speed frequency | For read access | 0.032 | 13 | MHz | |
TSCLKIH | SCLK input high time | For full-speed write access | 11.25 | ns | ||
TSCLKIL | SCLK input low time | For full-speed write access | 11.25 | ns | ||
TS | Data setup time | VDDIO = 1.8 V | 1 | ns | ||
VDDIO = 1.2 V | 4 | |||||
TH | Data hold time | 5 | ns | |||
TD | Time for data output valid from SCLK rising edge | TPS657120 is a half-speed device for read operations | 0 | 22 | ns | |
TSDATAOTRL | SDATA output transition (rise/fall) time | 2.1 | 6.5 | ns | ||
TSDATAZ | Data drive release time | 10 | ns |
The graphs have been generated using the evaluation module (EVM) with the passive components as specified in the recommended operating conditions unless listed below at TA = 25°C, unless otherwise specified:
FIGURE | |||
---|---|---|---|
Efficiency DCDC1 vs Load current / PWM mode | VO = 1.7 V; VI = 3.0 V, 3.8 V, 4.2 V, 5.0 V | Figure 4-5 | |
Efficiency DCDC1 vs Load current / PFM mode | VO = 1.7 V; VI = 3.0 V, 3.8 V, 4.2 V, 5.0 V | Figure 4-6 | |
Efficiency DCDC2 vs Load current / PWM mode | VO = 2.65 V; VI = 3.0 V, 3.8 V, 4.2 V, 5.0 V | Figure 4-7 | |
Efficiency DCDC2 vs Load current / PFM mode | VO = 2.65 V; VI = 3.0 V, 3.8 V, 4.2 V, 5.0 V | Figure 4-8 | |
Efficiency DCDC3 vs Load current / PWM mode | VO = 0.85 V; VI = 3.0 V, 3.8 V, 4.2 V, 5.0 V | Figure 4-9 | |
Efficiency DCDC3 vs Load current / PFM mode | VO = 0.85 V; VI = 3.0 V, 3.8 V, 4.2 V, 5.0 V | Figure 4-10 | |
Efficiency DCDC3 vs Load current / PWM mode | VO = 2.0 V; VI = 3.0 V, 3.8 V, 4.2 V, 5.0 V | Figure 4-11 | |
Efficiency DCDC3 vs Load current / PFM mode | VO = 2.0 V; VI = 3.0 V, 3.8 V, 4.2 V, 5.0 V | Figure 4-12 | |
Efficiency DCDC3 vs Load current / PWM mode | VO = 3.4 V; VI = 3.6 V, 3.8 V, 4.2 V, 5.0 V | Figure 4-13 | |
Efficiency DCDC3 vs Load current / PFM mode | VO = 3.4 V; VI = 3.6 V, 3.8 V, 4.2 V, 5.0 V | Figure 4-14 | |
Load transient response DCDC1 in PWM mode | IO= 30 mA to 270 mA; VO = 1.7 V; VI = 3.6 V | Figure 4-15 | |
Load transient response DCDC1 in PFM mode | IO= 30 mA to 270 mA; VO = 1.7 V; VI = 3.6 V | Figure 4-16 | |
Load transient response DCDC2 in PWM mode | IO= 30 mA to 270 mA; VO = 2.65 V; VI = 3.6 V | Figure 4-17 | |
Load transient response DCDC2 in PFM mode | IO= 30 mA to 270 mA; VO = 2.65 V; VI = 3.6 V | Figure 4-18 | |
Load transient response DCDC3 in PFM mode | IO= 100 mA to 900 mA; VO = 2.0 V; VI = 3.6 V | Figure 4-19 | |
Load transient response DCDC3 in PFM mode | IO= 200 mA to 1800 mA; VO = 3.4 V; VI = 3.8 V | Figure 4-20 | |
Line transient response DCDC1 in PWM mode | VO= 1.7 V; VI = 3.6 V to 4.2 V; IO= 100 mA | Figure 4-21 | |
Line transient response DCDC1 in PFM mode | VO= 1.7 V; VI = 3.6 V to 4.2 V; IO= 100 mA | Figure 4-22 | |
Line transient response DCDC2 in PWM mode | VO= 2.65 V; VI = 3.6 V to 4.2 V; Load = 26.5 Ω at 100 mA | Figure 4-23 | |
Line transient response DCDC2 in PFM mode | VO= 2.65 V; VI = 3.6 V to 4.2 V; Load = 26.5 Ω at 100 mA | Figure 4-24 | |
Line transient response DCDC3 in PFM mode | VO = 2.0 V; VI= 3.6 V to 4.2 V; Load = 1.6 Ω at 1.25 A | Figure 4-25 | |
Line transient response DCDC3 in PFM mode | VO = 3.4 V; VI= 3.6 V to 4.2 V; Load = 3.1 Ω at 1.1 A | Figure 4-26 | |
PSRR for DCDC1 | VO = 1.7 V; VI= 3.6 V; Load = 80 mA, 150 mA | Figure 4-27 | |
PSRR for DCDC2 | VO = 2.65 V; VI= 3.6 V; Load = 80 mA, 150 mA | Figure 4-28 | |
PSRR for DCDC3 | VO = 2.0 V; VI= 3.6 V; Load = 80 mA, 150 mA | Figure 4-29 | |
PSRR for DCDC3 | VO = 3.4 V; VI= 3.6 V; Load = 80 mA, 150 mA | Figure 4-30 | |
Load transient response for LDO1 in PFM mode | IO= 1 mA to 9 mA; VO = 1.8 V; VI = 3.6 V | Figure 4-31 | |
Load transient response for LDO2 in PFM mode | IO= 1 mA to 9 mA; VO = 2.8 V; VI = 3.6 V | Figure 4-32 | |
Line transient response LDO1 | VO = 1.8 V; VI= 3.6 V to 4.2 V; Load = 180 Ω at 10 mA | Figure 4-33 | |
Line transient response LDO2 | VO = 2.8 V; VI= 3.6 V to 4.2 V; Load = 280 Ω at 10 mA | Figure 4-34 | |
PSRR for LDO1 | VO = 1.8 V; Load = 10 mA; VI = 2.7 V, 3.3 V | Figure 4-35 | |
PSRR for LDO2 | VO = 2.8 V; Load = 10 mA; VI = 3.3 V, 3.6 V | Figure 4-36 | |
Output noise for LDO1 | VO = 1.8 V; Load = 180 Ω at 10 mA; VI= 3.6 V | Figure 4-37 | |
Output noise for LDO2 | VO = 2.8 V; Load = 280 Ω at 10 mA; VI= 3.6 V | Figure 4-38 | |
Startup DCDC1, DCDC2, LDO1, and LDO2 | VI= 3.6 V; Load = Open | Figure 4-39 |
DCDC1 | VO = 1.7 V |
DCDC2 | VO = 2.65 V |
DCDC3 | VO = 0.85 V |
DCDC3 | VO = 2.0 V |
DCDC3 | VO = 3.4 V |
IO= 30 mA to 270 mA | VO = 1.7 V | VI = 3.6 V |
IO= 30 mA to 270 mA | VO = 2.65 V | VI = 3.6 V |
IO= 100 mA to 900 mA | VO = 2.0 V | VI = 3.6 V |
VO= 1.7 V | VI = 3.6 V to 4.2 V | IO= 100 mA |
VO= 2.65 V | VI = 3.6 V to 4.2 V | Load = 26.5 Ω at 100 mA |
VO = 2.0 V | VI= 3.6 V to 4.2 V | Load = 1.6 Ω at 1.25 A |
VO = 1.7 V | VI= 3.6 V | Load = 80 mA, 150 mA |
VO = 2.0 V | VI= 3.6 V | Load = 80 mA, 150 mA |
IO= 1 mA to 9 mA | VO = 1.8 V | VI = 3.6 V |
VO = 1.8 V | VI= 3.6 V to 4.2 V | Load = 180 Ω at 10 mA |
VO = 1.8 V | Load = 10 mA | VI = 2.7 V, 3.3 V |
VO = 1.8 V | Load = 180 Ω at 10 mA | VI= 3.6 V |
VI= 3.6 V | Load = Open |
DCDC1 | VO = 1.7 V |
DCDC2 | VO = 2.65 V |
DCDC3 | VO = 0.85 V |
DCDC3 | VO = 2.0 V |
DCDC3 | VO = 3.4 V |
IO= 30 mA to 270 mA | VO = 1.7 V | VI = 3.6 V |
IO= 30 mA to 270 mA | VO = 2.65 V | VI = 3.6 V |
IO= 200 mA to 1800 mA | VO = 3.4 V | VI = 3.8 V |
VO= 1.7 V | VI = 3.6 V to 4.2 V | IO= 100 mA |
VO= 2.65 V | VI = 3.6 V to 4.2 V | Load = 26.5 Ω at 100 mA |
VO = 3.4 V | VI= 3.6 V to 4.2 V | Load = 3.1 Ω at 1.1 A |
VO = 2.65 V | VI= 3.6 V | Load = 80 mA, 150 mA |
VO = 3.4 V | VI= 3.6 V | Load = 80 mA, 150 mA |
IO= 1 mA to 9 mA | VO = 2.8 V | VI = 3.6 V |
VO = 2.8 V | VI= 3.6 V to 4.2 V | Load = 280 Ω at 10 mA |
VO = 2.8 V | Load = 10 mA | VI = 3.3 V, 3.6 V |
VO = 2.8 V | Load = 280 Ω at 10 mA | VI= 3.6 V |