SLVSBO3A December   2013  – December 2015 TPS657120

PRODUCTION DATA.  

  1. Device Overview
    1. 1.1 Features
    2. 1.2 Applications
    3. 1.3 Description
    4. 1.4 Functional Block Diagram
  2. Revision History
  3. Terminal Configuration and Functions
    1. 3.1 Pin Attributes
  4. Specifications
    1. 4.1  Absolute Maximum Ratings
    2. 4.2  ESD Ratings
    3. 4.3  Recommended Operating Conditions
    4. 4.4  Thermal Information
    5. 4.5  Electrical Characteristics: General Functions
    6. 4.6  Electrical Characteristics: DCDC1 and DCDC2
    7. 4.7  Electrical Characteristics: DCDC3
    8. 4.8  Electrical Characteristics: RF-LDOs
    9. 4.9  Electrical Characteristics: Digital Inputs, Digital Outputs
    10. 4.10 Electrical Characteristics: Thermal Shutdown, Undervoltage Lockout
    11. 4.11 Electrical Characteristics: RFFE Timing Parameters
    12. 4.12 Typical Characteristics
  5. Detailed Description
    1. 5.1 Overview
    2. 5.2 Functional Block Diagram
    3. 5.3 Feature Description
      1. 5.3.1  Default Settings
      2. 5.3.2  Linear Regulators
        1. 5.3.2.1 Low Quiescent Current (Eco) Mode
        2. 5.3.2.2 Output Discharge
        3. 5.3.2.3 LDO Enable
        4. 5.3.2.4 LDO Voltage Range
        5. 5.3.2.5 LDO Power Good Comparator
      3. 5.3.3  Step-down Converters DCDC1 and DCDC2
      4. 5.3.4  Power Save Mode
      5. 5.3.5  Dynamic Voltage Positioning (Optional)
      6. 5.3.6  Soft Start / Enable
      7. 5.3.7  Dynamic Voltage Scaling (DVS) for DCDC1, DCDC2 and DCDC3
      8. 5.3.8  100% Duty Cycle Low Dropout Operation
      9. 5.3.9  180° Out-of-Phase Operation
      10. 5.3.10 Undervoltage Lockout for DCDC1, DCDC2, DCDC3, LDO1 and LDO2
      11. 5.3.11 Output Voltage Discharge
      12. 5.3.12 Short-Circuit Protection
      13. 5.3.13 Output Voltage Monitoring
      14. 5.3.14 Step-Down Converter and LDO Enable; pins CLK_REQ1 and CLK_REQ2
      15. 5.3.15 Step-Down Converter DCDC3
      16. 5.3.16 DCDC3_SEL Control
        1. 5.3.16.1 DCDC3_SEL Control - Voltage Mapping Option
        2. 5.3.16.2 DCDC3_SEL Control - Mapping the Enable Signal for the Negative Current Limit of DCDC3 to DCDC3_SEL; Additional Option for Rev 1.1 and Higher Only
      17. 5.3.17 Bypass Switch
      18. 5.3.18 DCDC3 Output Voltage Ramp Support
      19. 5.3.19 VCON Decoder
      20. 5.3.20 Thermal Monitoring and Shutdown
      21. 5.3.21 GPIOs
      22. 5.3.22 nRESET Input ; ADR_SELECT Input
      23. 5.3.23 Power State Machine
      24. 5.3.24 Implementation of Internal Power-Up and Power-Down Sequencing
      25. 5.3.25 VDDIO Voltage for Push-pull Output Stages / Interface
      26. 5.3.26 TPS657120 On Off Operation
        1. 5.3.26.1 TPS657120 Power-Up
        2. 5.3.26.2 TPS657120 PWR_REQ Driving DCDC1, DCDC2 and LDO1
      27. 5.3.27 MIPI RFFE Interface
        1. 5.3.27.1 MIPI RFFE Write Cycle
        2. 5.3.27.2 MIPI RFFE Read Cycle
    4. 5.4 Device Functional Modes
    5. 5.5 Register Maps
  6. Application and Implementation
    1. 6.1 Application Information
    2. 6.2 Typical Application
      1. 6.2.1 Design Requirements
      2. 6.2.2 Detailed Design Procedure
        1. 6.2.2.1 Output Filter Design (Inductor and Output Capacitor)
          1. 6.2.2.1.1 Inductor Selection
          2. 6.2.2.1.2 Output Capacitor Selection
          3. 6.2.2.1.3 Input Capacitor / Output Capacitor Selection
          4. 6.2.2.1.4 Voltage Change on DCDC1, DCDC2 and DCDC3
      3. 6.2.3 Application Curve
  7. Power Supply Recommendations
  8. Layout
    1. 8.1 Layout Guidelines
    2. 8.2 Layout Example
  9. Device and Documentation Support
    1. 9.1 Device Support
      1. 9.1.1 Third-Party Products Disclaimer
    2. 9.2 Community Resources
    3. 9.3 Trademarks
    4. 9.4 Electrostatic Discharge Caution
    5. 9.5 Glossary
  10. 10Mechanical, Packaging, and Orderable Information

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ
発注情報

4 Specifications

4.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)
MIN MAX UNIT
Voltage all pins except A/PGND pins and pins listed below with respect to AGND –0.3 6 V
VLDO1, VLDO2, VDDIO with respect to AGND –0.3 3.6 V
pin VDCDC3 with respect to AGND –0.3 5.5 V
pins SDATA, SCLK, DCDC3_SEL , GPIO_0, GPIO_1, CLK_REQ1, CLK_REQ2 , with respect to AGND –0.3 VDDIO + 0.3 V
Current all non power pins 5 mA
power pins 2 A
TA Operating free-air temperature –40 85 °C
TJ Maximum junction temperature 125 °C
Tstg Storage temperature –65 150 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under Section 4.3 is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

4.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins(1) 2000 V
Charged device model (CDM), per JEDEC specification JESD22-C101, all pins(2) 500
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

4.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)
MIN NOM MAX UNIT
DCDC CONVERTERS
VINDCDC1,
VINDCDC2,
VINDCDC3
Input voltage range for step-down converter DCDC1, DCDC2, DCDC3 2.8 5.5 V
Output voltage range for step-down converter DCDC1, DCDC2 0.8 3.3 V
DCDC3 0.1 3.6 V
L1, L2 Inductance at L1, L2 1 2.2 2.9 μH
L3 Inductance at L3 1 1.5 2.2 μH
CVINDCDC1/2 Input capacitance at VINDCDC1/2 (1) 4.7 10 μF
CVINDCDC3 Input capacitance at VINDCDC3 (1) 10 22 μF
COUTDCDC1,2 Output capacitance at DCDC1 and DCDC2 (1) 4.7 10 22 μF
COUTDCDC3 Output capacitance at DCDC3 (1) 2.0 6 12 μF
LDOs; GENERIC
VINLDO1 Input voltage range for LDO1 2.0 5.5 V
VINLDO2(2) Input voltage for LDO2(3) 2.8 5.5 V
VLDO1, VLDO2 Output voltage for LDOs 1.2 3.4 V
CINLDO1
CINLDO2
Input capacitance on LDO supply pins (1) 0.5 μF
CoutLDO1,
CoutLDO2
Output capacitance on LDO1, LDO2 (1) 1 4.7 μF
VVDDIO for RFFE interface at 1.2 V or 1.8 V 1.1 1.95 V
CVDDIO Input capacitance on VDDIO 100 nF
C(C2V5) Capacitance at internal supply at pin C2V5 0.5 1 10 μF
C(VREF1V0) Bypass capacitance at internal reference VREF1V0 47 100 220 nF
TA Operating ambient temperature –40 85 °C
TJ Operating junction temperature –40 125 °C
(1) Ceramic capacitors show an effect called DC Bias Effect. With a dc voltage applied to a ceramic capacitor , the effective capacitance is reduced. The table above therefore lists the minimum value as Capacitance. In order to meet the minimum capacitance, the nominal value may have to be scaled accordingly to take the drop of capacitance into account for a given dc voltage at the LDOs of dcdc converters. Input capacitors need to be placed as close as possible to the pins of TPS657120.
(2) Analog supply voltage VIN_ANA
(3) As this pin is used as the analog supply voltage, it needs to be tied to VINDCDCx

4.4 Thermal Information

THERMAL METRIC(1) TPS657120 UNIT
YFF (DSBGA)
30 PINS
RθJA Junction-to-ambient thermal resistance 58.8 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 0.3 °C/W
RθJB Junction-to-board thermal resistance 27.0 °C/W
ψJT Junction-to-top characterization parameter 1.4 °C/W
ψJB Junction-to-board characterization parameter 26.9 °C/W
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report (SPRA953).

4.5 Electrical Characteristics: General Functions

TA = –40°C to +85°C, typical values are at TA = 25°C (unless otherwise noted), see Section 4.12.
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
ISB Standby supply current PWRON=LOW; total current in STANDBY state into pins VINDCDC1/2, VINDCDC3 and VIN_ANA 55 μA
IQ Quiescent supply current PWRON=HIGH, LDOs and DCDC converters =OFF 60 μA
IQ Quiescent supply current PWRON=HIGH, LDO1 and LDO2 and DCDC1 and DCDC2 = enabled in normal mode 170 μA

4.6 Electrical Characteristics: DCDC1 and DCDC2

TA = –40°C to +85°C, typical values are at TA = 25°C (unless otherwise noted); see Section 4.12.
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
VIN Input voltage 2.8 5.5 V
VDCDC1
VDCDC2
DCDCx output voltage 25-mV steps up to 2.2 V; 50-mV steps above 2.2 V 0.8 3.3 V
VDCDC1
VDCDC2
Default output voltage VDCDC1 1.7 V
VDCDC2 2.65
IOUT(DCDCx) Continuous output current DCDC1 (VINDCDC1 ≥ 2.8 V) 300 mA
DCDC2 (VINDCDC2 ≥ 2.8 V) 250
IQ Quiescent current ILOAD = 0 mA, DCDCx_MODE = 0, Device not switching; for each DCDC1 and DCDC2 16 25 μA
ILOAD = 0 mA, DCDCx_MODE = 1, Device switching; for each DCDC1 and DCDC2 3.5 mA
VDCDC1/2 Accuracy DCDCx_MODE = 1, VIN = 3.0 V to 5.5 V, ILOAD = 0 mA, tolerance is ±2% or ±25 mV whatever is larger –2% 2%
DCDCx_MODE = 0, VIN = 3.0 V to 5.5 V, ILOAD = 0 mA, +1% voltage scaling active –3% 1.25% 3.5%
Load regulation DCDCx_MODE = 1, VIN = 3.0 V to 5.5 V; ILOAD = 25 mA to 225 mA; for DCDC1 and DCDC2 0.25 %/A
fSW Switching frequency DCDCx_MODE = 1, VIN = 3.0 V to 5.5 V 1.9 2.4 2.6 MHz
RDS(ON) High-side FET On-resistance For DCDC1 and DCDC2 with VINDCDCx = 3.6 V, D = 100% 250 400
RDS(ON) Low-side FET On-resistance For DCDC1 and DCDC2 with VINDCDCx = 3.6 V, D = 100% 220 350
ILK_HS High-side FET leakage current TJ = 85°C; DCDC1, DCDC2; VINDCDC1 = VINDCDC2 = 5.5 V 2 μA
ILK_LS Low-side FET leakage current TJ = 85°C; DCDC1, DCDC2; VINDCDC1 = VINDCDC2 = 5.5 V 3 μA
IHS_LIMF High-side forward current limit 2.9 V ≤ VIN_DCDC1 ≤ 5.5 V; for DCDC1 500 650 800 mA
ILS_LIMF Low-side forward current limit 2.9 V ≤ VIN_DCDC1 ≤ 5.5 V; for DCDC1 500 650 800 mA
IHS_LIMF High-side forward current limit 2.9 V ≤ VIN_DCDC2 ≤ 5.5 V; for DCDC2 425 600 775 mA
ILS_LIMF Low-side forward current limit 2.9 V ≤ VIN_DCDC2 ≤ 5.5 V; for DCDC2 425 600 775 mA
DCDC1, DCDC2 output voltage ripple VIN = 3.6 V; VOUT = 1.7 V to 2.65 V; Io = 10 mA to 300 mA; L = 1.5uH, RSL = 50 mR; Co = 10 µF 10 25 mVpp
Efficiency VINDCDCx = 3.7 V, Vo = 1.7 V or Vo = 2.65 V; Io = 80 mA to 150 mA 88% 93%
VINDCDCx = 3.7 V, Vo = 1.7 V or Vo = 2.65 V; Io = 300 µA 80%
VINDCDCx = 3.7 V, Vo = 1.7 V or Vo = 2.65 V; Io = 100 µA 45%
Pulse skipping threshold Output current when device switches from PFM to PWM automatically; VIN = 3.6 V, VOUT = 1.7 V 140 mA
output current when device switches from PFM to PWM automatically; VIN = 3.6 V, VOUT = 2.65 V 60
PSRR Power supply rejection ratio VIN = 3.6 V, ILOAD = 150 mA, 10 Hz < f < 10 kHz, Vo = 1.7 V and Vo = 2.65 V 40 dB
Output noise VIN = 3.6 V, ILOAD = 100 mA, Vo = 1.7 V and Vo = 2.65 V μV/√Hz
1 kHz < f < 100 kHz 2
100 kHz < f < 1 MHz 0.2
1 MHz < f < 10 MHz; not including f(sw) 0.1
VDCDCPG-falling Power good threshold VDCDCx falling VDCDCx –15% VDCDCx – 7%
VDCDCPG-rising Power good threshold VDCDCx rising VDCDCx – 3%
tStart Start-up time Time to start switching, measured from end of MIPI command enabling converter 225 μs
tRamp VOUT Ramp UP time Time to ramp from 5% to 95% of VOUT 200 μs
RDischarge Discharge resistor 250 400 600 Ω

4.7 Electrical Characteristics: DCDC3

TA = –40°C to +85°C, typical values are at TA = 25°C (unless otherwise noted); see Section 4.12.
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
VIN Input voltage 2.8 5.5 V
VDCDC3 DCDC3 output voltage output voltage defined by internal resistor divider; DCDC3_CTRL:VCON = 0 0.8 3.60 V
output voltage defined by VCON input; DCDC3_CTRL:VCON = 1 0.1 3.60
IOUT(DCDC3) Continuous output current DCDC3 2200 mA
IQ Quiescent current ILOAD = 0 mA, DCDC3_MODE = 0, Device not switching 26 46 μA
ILOAD = 0 mA, DCDC3_MODE = 1, Device switching 6 mA
VDCDC3 Accuracy; output voltage setting with register; DCDC3_CTRL:VCON = 0 DCDC3_MODE = 1, ILOAD = 0 mA, TA = 25°C;
COUT = 2 x 4.7 µF + 2.2 µF
–2% 2%
DCDC3_MODE = 1, ILOAD = 0 mA, TA = –40 – 85°C;
COUT = 2 x 4.7 µF + 2.2 µF
–2.5% 2.5%
DCDC3_MODE = 0, ILOAD = 0 mA, TA = 25°C;
COUT = 2 x 4.7 µF + 2.2 µF
the output voltage tolerance is ±3% or ±45 mV whichever is larger
–3% 3%
DCDC3_MODE = 0, ILOAD = 0 mA, TA = –40 – 85°C;
COUT = 2 x 4.7 µF + 2.2 µF
the output voltage tolerance is ±3% or ±45 mV whichever is larger
–3% 3%
Accuracy for VCON operation; DCDC3_CTRL:VCON = 1 Vo = 0.1 V to 3.6 V; COUT = 2 x 4.7 µF + 2.2 µF;
PWM mode forced automatically; accuracy in VCON mode is ±5% or ±25 mV, whichever is larger
–5% 5%
fSW Switching frequency DCDC3_MODE = 1 or DCDC3_CTRL:VCON = 1 2100 2300 2700 kHz
RDS(ON) High-side MOSFET on-resistance VIN_DCDC3 = 3.6 V, 100% duty cycle 75 120
Low-side MOSFET on-resistance VIN_DCDC3 = 3.6 V, 0% duty cycle 110 180
ILK_HS High-side leakage current TJ = 85°C; VINDCDC3=4.2 V 3 μA
ILK_LS Low-side leakage current TJ = 85°C; VINDCDC3=4.2 V 3 μA
ILIM High-side current limit 2.9 V ≤ VIN_DCDC3 ≤ 5.5 V 2400 3000 3600 mA
ILIM Low-side current limit 2.9 V ≤ VIN_DCDC3 ≤ 5.5 V 2200 2800 3400 mA
ILIM Low-side negative current limit 2.9 V ≤ VIN_DCDC3 ≤ 5.5 V; EN_nILIM_xl=1 1000 1500 2000 mA
2.9 V ≤ VIN_DCDC3 ≤ 5.5 V; EN_nILIM_xl=0 200 mA
Duty cycle VIN = 3.6 V 2% 100%
DCDC3 output voltage ripple VIN = 5 V; VOUT = 3.4 V; Io=2 A; L=1.5 µH, ESR=90 mR; Co=10 µF 10 50 mVpp
DCDC3 load transient response VIN = 5 V; VOUT = 3.4 V; Io=200 mA to 1.8 A; L=1.5 µH, ESR=90 mR; Co=10 µF; dt=10 µs 100 mV
Efficiency VINDCDCx=3.7 V, Vo=3.4 V; Io=1500 mA 80%
VINDCDCx=3.7 V, Vo=3.4 V; Io=400 mA 90%
VINDCDCx=3.7 V, Vo=2.0 V; Io=10 mA 80%
Output noise VIN = 3.6 V, ILOAD = 100 mA, Vo=2.65 V μV/√Hz
1 kHz < f < 100 kHz 3
100 kHz < f < 1 MHz 0.2
1 MHz < f < 10 MHz 0.1
VDCDCPG-falling Power good threshold VDCDCx falling VDCDCx - 14% VDCDCx - 7%
VDCDCPG-rising Power good threshold VDCDCx rising VDCDCx - 5%
tStart Start-up time Time to start switching, measured from end of RFFE command enabling converter 175 μs
tRamp VOUT Ramp UP time Time to ramp from 5% to 95% of VOUT ; DCDC3_CTRL:IMMEDIATE = 1; VOUT = 3.4 V 30 μs
Rise and fall time dVo=±1 V; Io=450 mA; Co=10 µF; DCDC3_SEL mode 30 μs
Ramp time in VCON mode 10 μs
VCON input voltage 0.2 2.1 V
VCON slew rate 300 mV/μs
VCON input resistance 1
VCON gain Typical adjustable range 1.3 2.7
VCON offset –350 0 mV
RDischarge Discharge resistor 250 400 500 Ω
Voltage between VINDCDC3 and VDCDC3 5.5 V
Bypass switch current limit VINDCDCx= 2.8 V to 5.5 V; not tested in production 2000 2500 3000 mA
Bypass switch current limit response time 10 µs
Resistance from VINDCDC3 to VDCDC3 Bypass switch closed; not including the parallel path through high side switch and inductor 100 170
Leakage current from VINDCDC3 to VDCDC3 When bypass switch is open 10 µA
Bypass switch over-voltage protection Sensed at VDCDC3; bypass enabled bit is cleared when voltage is exceeded; rising edge 4.0 V
Sensed at VDCDC3; bypass enabled bit is cleared when voltage is exceeded; falling edge 3.7

4.8 Electrical Characteristics: RF-LDOs

TA = –40°C to +85°C, typical values are at TA = 25°C (unless otherwise noted); see Section 4.12.
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
VIN Input voltage LDO1 2.0 5.5 V
LDO2, analog supply voltage input 2.8 5.5
VLDOx LDO output voltage for RF-LDOs 50-mV steps 1.2 3.4 V
LDO voltage accuracy ECO = 0 –2% 2%
ECO = 1 –5% 5%
IOUT(LDOx) LDO continuous output current LDO1 10 mA
LDO2 10
ISHORT(LDOx) LDO current limit LDO1 20 80 mA
LDO2 20 80
VDO(LDOx) Dropout voltage (1) IOUT(LDO1) = 10 mA; VINLDO1=2.0 V 250 mV
IOUT(LDO2) = 10 mA; VINLDO2=3.0 V 250
Line regulation VIN = VLDO + 0.5 V & ILOAD = 10 mA for LDO1 and for LDO2 –1% 1%
Load regulation; ECO = 0 LDO1 and LDO2: ILOAD = 50 µA to 10 mA 40 mV
Load regulation; ECO = 1 LDO1 and LDO2: ILOAD = 0 mA to 1 mA –5% 5%
Line transient response dV/dt = ±0.5 V/μs –50 50 mV
Load transient response for LDO1 and LDO2: dI/dt = 100 mA/μs; 1-mA to 10-mA load step 50 mV
PSRR Power supply rejection ratio f = 10 Hz to 1 kHz, VIN - VOUT ≥ 0.5 V, ILOAD = 10 mA 63 dB
Output voltage noise f = 10 Hz to 100 kHz, VIN - VOUT ≥ 0.5 V , ILOAD = 10 mA 30 µVrms
Iq Quiescent current ECO = 1; ILOAD ≤ 1 mA for LDO1, LDO2 16 µA
ECO = 0; ILOAD ≤ 10 mA for LDO1, LDO2 40 µA
ECO exit time Minimum wait time before the full current can be drawn after ECO is set 0 50 µs
tRamp VOUT ramp up time Time to ramp from 5% to 95% of VOUT ; IOUT = 10 mA;
Co=4.7 µF; Vo=1.8 V
850 1000 µs
tRamp VOUT ramp up time Time to ramp from 5% to 95% of VOUT ; IOUT = 10 mA;
Co=4.7 µF; Vo=2.8 V
1000 1200 µs
VLDOPG-falling Power good threshold VDCDCx falling VLDOx - 14% VLDOx - 7%
VLDOPG-rising Power good threshold VDCDCx rising VLDOx - 5%
RDischarge Discharge resistance at LDOx output LDOx disabled 200 325 450 Ω
(1) VDO = VIN - VOUT, where VOUT = VOUT(NOM) - 2%

4.9 Electrical Characteristics: Digital Inputs, Digital Outputs

TA = –40°C to +85°C, typical values are at TA = 25°C (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
RFFE INTERFACE
VVDDIO VDDIO voltage VDDIO = 1.2 V 1.1 1.2 1.3 V
VDDIO = 1.8 V 1.65 1.8 1.95 V
IVIO-IN I/O voltage average input current for SDATA, SCLK VDDIO=1.8 V; average during a 26-MHz write 1.25 mA
CL Load capacitance Half-speed readback; not including TPS657120 pin capacitance 50 pF
VOL Low level output voltage for SDATA, SCLK IOL= 2 mA 0 0.2 × VDDIO V
VOH High level output voltage for SDATA, SCLK IOH= –2 mA 0.8 × VDDIO VDDIO V
VTP INPUT: Positive going threshold voltage VDDIO = 1.2 V or 1.8 V 0.4 × VDDIO 0.7 × VDDIO V
VTN INPUT: Negative going threshold voltage VDDIO = 1.2 V 0.28 × VDDIO 0.6 × VDDIO V
VTN INPUT: Negative going threshold voltage VDDIO = 1.8 V 0.3 × VDDIO 0.6 × VDDIO V
VH INPUT: Hysteresis voltage (VTP-VTN) VDDIO = 1.2 V or 1.8 V 0.1 × VDDIO 0.4 × VDDIO V
VIORST RFFE I/O voltage reset voltage level RFFE interface is in reset when VDDIO is below that voltage 0.95 V
IIH SDATA = 0.8 x VDDIO –2 10 uA
SCLK = 0.8 x VDDIO –1 10
IIL SDATA = 0.2 x VDDIO –2 5 uA
SCLK = 0.2 x VDDIO –1 1
GENERIC I/Os
VIL Low-level input voltage PWRON 0 0.4 V
GPIO_0, GPIO_1, CLK_REQ1, CLK_REQ2 , DCDC3_SEL; SDATA, SCLK 0 0.3 × VDDIO
VIH High-level input voltage PWRON 1.1 Vcc V
GPIO_0, GPIO_1, CLK_REQ1, CLK_REQ2 , DCDC3_SEL, SDATA, SCLK 0.7 × VDDIO VDDIO
VOL Low-level output voltage IOL= 1 mA for VDDIO=1.8 V 0 0.2 V
VOH High-level output voltage For pins configured as push-pull ouput to VDDIO; IOH= 1 mA for VDDIO=1.8 V VDDIO - 0.2 VDDIO V
For pins configured as open-drain ouput Vcc
IOL Low-level output current Low-level output current VDDIO ≥ 1.8 V 1 mA
VDDIO = 1.2 V 0.1
IOH High-level output current VDDIO ≥ 1.8 V 1 mA
VDDIO = 1.2 V 0.1
ILKG Input leakage current Input pins tied to VILor VIH 0.2 µA
TdHL CLK_REQ1, CLK_REQ2, DCDC3_SEL delay for HIGH to LOW change 2 µs
TdLH CLK_REQ1, CLK_REQ2, DCDC3_SEL delay for LOW to HIGH change 2 µs
TdLH PWRON delay for LOW to HIGH change For TPS657120 in STANDBY mode going to ACTIVE 4 30% ms

4.10 Electrical Characteristics: Thermal Shutdown, Undervoltage Lockout

TA = –40°C to +85°C, typical values are at TA = 25°C (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
Thermal shutdown temperature rising threshold 136 148 160 °C
Thermal shutdown temperature hysteresis Temperature falling 20 °C
UVLO threshold Supply voltage rising 2.7 V
UVLO threshold Supply voltage falling 2.6 V

4.11 Electrical Characteristics: RFFE Timing Parameters

TA = –40°C to +85°C, typical values are at TA = 25°C (unless otherwise noted)
MIN NOM MAX UNIT
fCLK SCLK frequency For write access 0.032 26 MHz
fCLK_HALF SCLK half-speed frequency For read access 0.032 13 MHz
TSCLKIH SCLK input high time For full-speed write access 11.25 ns
TSCLKIL SCLK input low time For full-speed write access 11.25 ns
TS Data setup time VDDIO = 1.8 V 1 ns
VDDIO = 1.2 V 4
TH Data hold time 5 ns
TD Time for data output valid from SCLK rising edge TPS657120 is a half-speed device for read operations 0 22 ns
TSDATAOTRL SDATA output transition (rise/fall) time 2.1 6.5 ns
TSDATAZ Data drive release time 10 ns
TPS657120 Received_CLK.gif Figure 4-1 MIPI RFFE Received Clock Signal Constraints
TPS657120 BusActiveDataTransmission.gif Figure 4-2 MIPI RFFE Bus Active Data Transmission Timing Specification
TPS657120 BusParkCycle.gif Figure 4-3 MIPI RFFE Bus Park Cycle Timing
TPS657120 DataSetupHoldTiming.gif Figure 4-4 MIPI RFFE Data Setup and Hold Timing

4.12 Typical Characteristics

at TA = 25°C (unless otherwise noted)

The graphs have been generated using the evaluation module (EVM) with the passive components as specified in the recommended operating conditions unless listed below at TA = 25°C, unless otherwise specified:

  • L1 = L2 = DFE201610C-2R2
  • L3 = DFE252010-1R5
  • CoutDCDC1,2 = 10 µF (GRM188R61A106ME69)
  • CoutDCDC3 = 4.7 µF + 2.2 µF (GRM188R60J475KE19 + GRM185R60J225)
  • CoutLDO1,2 = 4.7 µF (GRM188R60J475KE19)

Table 4-1 Table of Graphs

FIGURE
Efficiency DCDC1 vs Load current / PWM mode VO = 1.7 V; VI = 3.0 V, 3.8 V, 4.2 V, 5.0 V Figure 4-5
Efficiency DCDC1 vs Load current / PFM mode VO = 1.7 V; VI = 3.0 V, 3.8 V, 4.2 V, 5.0 V Figure 4-6
Efficiency DCDC2 vs Load current / PWM mode VO = 2.65 V; VI = 3.0 V, 3.8 V, 4.2 V, 5.0 V Figure 4-7
Efficiency DCDC2 vs Load current / PFM mode VO = 2.65 V; VI = 3.0 V, 3.8 V, 4.2 V, 5.0 V Figure 4-8
Efficiency DCDC3 vs Load current / PWM mode VO = 0.85 V; VI = 3.0 V, 3.8 V, 4.2 V, 5.0 V Figure 4-9
Efficiency DCDC3 vs Load current / PFM mode VO = 0.85 V; VI = 3.0 V, 3.8 V, 4.2 V, 5.0 V Figure 4-10
Efficiency DCDC3 vs Load current / PWM mode VO = 2.0 V; VI = 3.0 V, 3.8 V, 4.2 V, 5.0 V Figure 4-11
Efficiency DCDC3 vs Load current / PFM mode VO = 2.0 V; VI = 3.0 V, 3.8 V, 4.2 V, 5.0 V Figure 4-12
Efficiency DCDC3 vs Load current / PWM mode VO = 3.4 V; VI = 3.6 V, 3.8 V, 4.2 V, 5.0 V Figure 4-13
Efficiency DCDC3 vs Load current / PFM mode VO = 3.4 V; VI = 3.6 V, 3.8 V, 4.2 V, 5.0 V Figure 4-14
Load transient response DCDC1 in PWM mode IO= 30 mA to 270 mA; VO = 1.7 V; VI = 3.6 V Figure 4-15
Load transient response DCDC1 in PFM mode IO= 30 mA to 270 mA; VO = 1.7 V; VI = 3.6 V Figure 4-16
Load transient response DCDC2 in PWM mode IO= 30 mA to 270 mA; VO = 2.65 V; VI = 3.6 V Figure 4-17
Load transient response DCDC2 in PFM mode IO= 30 mA to 270 mA; VO = 2.65 V; VI = 3.6 V Figure 4-18
Load transient response DCDC3 in PFM mode IO= 100 mA to 900 mA; VO = 2.0 V; VI = 3.6 V Figure 4-19
Load transient response DCDC3 in PFM mode IO= 200 mA to 1800 mA; VO = 3.4 V; VI = 3.8 V Figure 4-20
Line transient response DCDC1 in PWM mode VO= 1.7 V; VI = 3.6 V to 4.2 V; IO= 100 mA Figure 4-21
Line transient response DCDC1 in PFM mode VO= 1.7 V; VI = 3.6 V to 4.2 V; IO= 100 mA Figure 4-22
Line transient response DCDC2 in PWM mode VO= 2.65 V; VI = 3.6 V to 4.2 V; Load = 26.5 Ω at 100 mA Figure 4-23
Line transient response DCDC2 in PFM mode VO= 2.65 V; VI = 3.6 V to 4.2 V; Load = 26.5 Ω at 100 mA Figure 4-24
Line transient response DCDC3 in PFM mode VO = 2.0 V; VI= 3.6 V to 4.2 V; Load = 1.6 Ω at 1.25 A Figure 4-25
Line transient response DCDC3 in PFM mode VO = 3.4 V; VI= 3.6 V to 4.2 V; Load = 3.1 Ω at 1.1 A Figure 4-26
PSRR for DCDC1 VO = 1.7 V; VI= 3.6 V; Load = 80 mA, 150 mA Figure 4-27
PSRR for DCDC2 VO = 2.65 V; VI= 3.6 V; Load = 80 mA, 150 mA Figure 4-28
PSRR for DCDC3 VO = 2.0 V; VI= 3.6 V; Load = 80 mA, 150 mA Figure 4-29
PSRR for DCDC3 VO = 3.4 V; VI= 3.6 V; Load = 80 mA, 150 mA Figure 4-30
Load transient response for LDO1 in PFM mode IO= 1 mA to 9 mA; VO = 1.8 V; VI = 3.6 V Figure 4-31
Load transient response for LDO2 in PFM mode IO= 1 mA to 9 mA; VO = 2.8 V; VI = 3.6 V Figure 4-32
Line transient response LDO1 VO = 1.8 V; VI= 3.6 V to 4.2 V; Load = 180 Ω at 10 mA Figure 4-33
Line transient response LDO2 VO = 2.8 V; VI= 3.6 V to 4.2 V; Load = 280 Ω at 10 mA Figure 4-34
PSRR for LDO1 VO = 1.8 V; Load = 10 mA; VI = 2.7 V, 3.3 V Figure 4-35
PSRR for LDO2 VO = 2.8 V; Load = 10 mA; VI = 3.3 V, 3.6 V Figure 4-36
Output noise for LDO1 VO = 1.8 V; Load = 180 Ω at 10 mA; VI= 3.6 V Figure 4-37
Output noise for LDO2 VO = 2.8 V; Load = 280 Ω at 10 mA; VI= 3.6 V Figure 4-38
Startup DCDC1, DCDC2, LDO1, and LDO2 VI= 3.6 V; Load = Open Figure 4-39
TPS657120 C001_SLVSBO3.png
DCDC1 VO = 1.7 V
Figure 4-5 Efficiency vs Load Current PWM Mode
TPS657120 C003_SLVSBO3.png
DCDC2 VO = 2.65 V
Figure 4-7 Efficiency vs Load Current PWM Mode
TPS657120 C005_SLVSBO3.png
DCDC3 VO = 0.85 V
Figure 4-9 Efficiency vs Load Current PWM Mode
TPS657120 C007_SLVSBO3.png
DCDC3 VO = 2.0 V
Figure 4-11 Efficiency vs Load Current PWM Mode
TPS657120 C009_SLVSBO3.png
DCDC3 VO = 3.4 V
Figure 4-13 Efficiency vs Load Current PWM Mode
TPS657120 Scope_01_SLVSBO3.gif
IO= 30 mA to 270 mA VO = 1.7 V VI = 3.6 V
Figure 4-15 Load Transient Response DCDC1 in PFM Mode
TPS657120 Scope_03_SLVSBO3.gif
IO= 30 mA to 270 mA VO = 2.65 V VI = 3.6 V
Figure 4-17 Load Transient Response DCDC2 in PFM Mode
TPS657120 Scope_05_SLVSBO3.gif
IO= 100 mA to 900 mA VO = 2.0 V VI = 3.6 V
Figure 4-19 Load Transient Response DCDC3 in PFM Mode
TPS657120 Scope_07_SLVSBO3.gif
VO= 1.7 V VI = 3.6 V to 4.2 V IO= 100 mA
Figure 4-21 Line Transient Response DCDC1 in PFM Mode
TPS657120 Scope_09_SLVSBO3.gif
VO= 2.65 V VI = 3.6 V to 4.2 V Load = 26.5 Ω at 100 mA
Figure 4-23 Line Transient Response DCDC2 in PFM Mode
TPS657120 Scope_11_SLVSBO3.gif
VO = 2.0 V VI= 3.6 V to 4.2 V Load = 1.6 Ω at 1.25 A
Figure 4-25 Line Transient Response DCDC3 in PFM Mode
TPS657120 C011_SLVSBO3.png
VO = 1.7 V VI= 3.6 V Load = 80 mA, 150 mA
Figure 4-27 PSRR for DCDC1
TPS657120 C013_SLVSBO3.png
VO = 2.0 V VI= 3.6 V Load = 80 mA, 150 mA
Figure 4-29 PSRR for DCDC3
TPS657120 Scope_13_SLVSBO3.gif
IO= 1 mA to 9 mA VO = 1.8 V VI = 3.6 V
Figure 4-31 Load Transient Response LDO1 in PFM Mode
TPS657120 Scope_15_SLVSBO3.gif
VO = 1.8 V VI= 3.6 V to 4.2 V Load = 180 Ω at 10 mA
Figure 4-33 Line Transient Response LDO1
TPS657120 C015_SLVSBO3.png
VO = 1.8 V Load = 10 mA VI = 2.7 V, 3.3 V
Figure 4-35 PSRR for LDO1
TPS657120 C017_SLVSBO3.png
VO = 1.8 V Load = 180 Ω at 10 mA VI= 3.6 V
Figure 4-37 Output Noise for LDO1
TPS657120 Scope_17_SLVSBO3.gif
VI= 3.6 V Load = Open
Figure 4-39 Startup DCDC1, DCDC2, LDO1, and LDO2
TPS657120 C002_SLVSBO3.png
DCDC1 VO = 1.7 V
Figure 4-6 Efficiency vs Load Current PFM Mode
TPS657120 C004_SLVSBO3.png
DCDC2 VO = 2.65 V
Figure 4-8 Efficiency vs Load Current PFM Mode
TPS657120 C006_SLVSBO3.png
DCDC3 VO = 0.85 V
Figure 4-10 Efficiency vs Load Current PFM Mode
TPS657120 C008_SLVSBO3.png
DCDC3 VO = 2.0 V
Figure 4-12 Efficiency vs Load Current PFM Mode
TPS657120 C010_SLVSBO3.png
DCDC3 VO = 3.4 V
Figure 4-14 Efficiency vs Load Current PFM Mode
TPS657120 Scope_02_SLVSBO3.gif
IO= 30 mA to 270 mA VO = 1.7 V VI = 3.6 V
Figure 4-16 Load Transient Response DCDC1 in PFM Mode
TPS657120 Scope_04_SLVSBO3.gif
IO= 30 mA to 270 mA VO = 2.65 V VI = 3.6 V
Figure 4-18 Load Transient Response DCDC2 in PFM Mode
TPS657120 Scope_06_SLVSBO3.gif
IO= 200 mA to 1800 mA VO = 3.4 V VI = 3.8 V
Figure 4-20 Load Transient Response DCDC3 in PFM Mode
TPS657120 Scope_08_SLVSBO3.gif
VO= 1.7 V VI = 3.6 V to 4.2 V IO= 100 mA
Figure 4-22 Line Transient Response DCDC1 in PFM Mode
TPS657120 Scope_10_SLVSBO3.gif
VO= 2.65 V VI = 3.6 V to 4.2 V Load = 26.5 Ω at 100 mA
Figure 4-24 Line Transient Response DCDC2 in PFM Mode
TPS657120 Scope_12_SLVSBO3.gif
VO = 3.4 V VI= 3.6 V to 4.2 V Load = 3.1 Ω at 1.1 A
Figure 4-26 Line Transient Response DCDC3 in PFM Mode
TPS657120 C012_SLVSBO3.png
VO = 2.65 V VI= 3.6 V Load = 80 mA, 150 mA
Figure 4-28 PSRR for DCDC2
TPS657120 C014_SLVSBO3.png
VO = 3.4 V VI= 3.6 V Load = 80 mA, 150 mA
Figure 4-30 PSRR for DCDC3
TPS657120 Scope_14_SLVSBO3.gif
IO= 1 mA to 9 mA VO = 2.8 V VI = 3.6 V
Figure 4-32 Load Transient Response LDO2 in PFM Mode
TPS657120 Scope_16_SLVSBO3.gif
VO = 2.8 V VI= 3.6 V to 4.2 V Load = 280 Ω at 10 mA
Figure 4-34 Line Transient Response LDO2
TPS657120 C016_SLVSBO3.png
VO = 2.8 V Load = 10 mA VI = 3.3 V, 3.6 V
Figure 4-36 PSRR for LDO2
TPS657120 C018_SLVSBO3.png
VO = 2.8 V Load = 280 Ω at 10 mA VI= 3.6 V
Figure 4-38 Output Noise for LDO2