SWCS071C August   2012  – August 2017

PRODUCTION DATA.  

  1. Device Overview
    1. 1.1 Features
    2. 1.2 Applications
    3. 1.3 Description
    4. 1.4 Functional Block Diagram
  2. Revision History
  3. Default Settings
  4. Pin Configuration and Functions
    1. 4.1 Pin Functions
  5. Specifications
    1. 5.1  Absolute Maximum Ratings
    2. 5.2  ESD Ratings
    3. 5.3  Recommended Operating Conditions
    4. 5.4  Thermal Characteristics
    5. 5.5  Electrical Characteristics - DCDC1, DCDC2, and DCDC3
    6. 5.6  Electrical Characteristics - DCDC4
    7. 5.7  Electrical Characteristics - LDOs
    8. 5.8  Electrical Characteristics - Digital Inputs, Digital Outputs
    9. 5.9  Electrical Characteristics - VMON Voltage Monitor, VDDIO, Undervoltage Lockout (UVLO), and LDOAO
    10. 5.10 Electrical Characteristics - Load Switch
    11. 5.11 Electrical Characteristics - LED Drivers
    12. 5.12 Electrical Characteristics - Thermal Monitoring and Shutdown
    13. 5.13 Electrical Characteristics - 32-kHz RC Clock
    14. 5.14 SPI Interface Timing Requirements
    15. 5.15 I2C Interface Timing Requirements
    16. 5.16 Typical Characteristics
  6. Parameter Measurement Information
    1. 6.1 I2C Timing Diagrams
    2. 6.2 SPI Timing Diagram
  7. Detailed Description
    1. 7.1  Overview
    2. 7.2  Functional Block Diagram
    3. 7.3  Linear Regulators
      1. 7.3.1 Low Quiescent Current Mode (Eco-mode™)
      2. 7.3.2 Output Discharge
      3. 7.3.3 Thermal Shutdown
      4. 7.3.4 LDO Enable
      5. 7.3.5 LDO Voltage Range
      6. 7.3.6 LDO Power Good Comparator
    4. 7.4  Step-Down Converters
      1. 7.4.1 PWM/PFM Mode
      2. 7.4.2 Low Quiescent Current Mode
      3. 7.4.3 Output Voltage Monitoring
      4. 7.4.4 Output Discharge
      5. 7.4.5 Thermal Shutdown
      6. 7.4.6 Step-Down Converter ENABLE
      7. 7.4.7 Step-Down converter SOFT START
    5. 7.5  GPIOs
    6. 7.6  Power State Machine
    7. 7.7  Transition Conditions
    8. 7.8  Implementation of Internal Power-Up and Power-Down Sequencing
    9. 7.9  EN1, EN2, EN3, EN4, Resources Control
    10. 7.10 SLEEP State Control
    11. 7.11 Registers SET_OFF, KEEP_ON and DEF_VOLT Used in SLEEP State; CONFIG2 = 1
    12. 7.12 Registers SET_OFF, KEEP_ON and DEF_VOLT Used for Resources Assigned to an External Enable Pin; CONFIG2 = 1
    13. 7.13 Registers SET_OFF, KEEP_ON and DEF_VOLT for Resources Assigned to Pins PWR_REQ, CLK_REQ1 and CLK_REQ2; CONFIG2 = 0
    14. 7.14 Voltage Scaling Interface Control Using _OP and _AVS Registers with I2C or SPI Interface
    15. 7.15 Voltage Scaling Using the VCON Decoder on Pins VCON_PWM and VCON_CLK
    16. 7.16 Configuration Pins CONFIG1, CONFIG2 and DEF_SPI_I2C-GPIO
    17. 7.17 VDDIO Voltage for Push-Pull Output Stages
    18. 7.18 Digital Signal Summary
    19. 7.19 TPS659121 On/Off Operation With E450, E500
      1. 7.19.1 TPS659121 Power Up From Battery or 5-V USB Supply; CONFIG1=LOW
      2. 7.19.2 TPS659121 Power Up From 3.3-V Host Supply; CONFIG1=LOW
    20. 7.20 TPS659122 On/Off Operation for CONFIG1=HIGH
      1. 7.20.1 TPS659122 Power Up With CONFIG1=HIGH
      2. 7.20.2 TPS659121, TPS659122 Power-Off Sequence With CONFIG1=HIGH
    21. 7.21 TPS659122 On/Off Operation for CONFIG1=LOW
      1. 7.21.1 TPS659122 Power Up With CONFIG1=LOW
      2. 7.21.2 TPS659122 Power-Off Sequence With CONFIG1=LOW
    22. 7.22 Interfaces
    23. 7.23 Serial Peripheral Interface
    24. 7.24 I2C Interface
      1. 7.24.1 I2C Implementation
      2. 7.24.2 F/S-Mode Protocol
      3. 7.24.3 H/S-Mode Protocol
    25. 7.25 Thermal Monitoring and Shutdown
    26. 7.26 Load Switch
    27. 7.27 LED Driver
    28. 7.28 Memory
      1. 7.28.1 Register Format
      2. 7.28.2 Register Descriptions
        1. 7.28.2.1 DCDC Registers
          1. 7.28.2.1.1  DCDC1_CTRL (00h)
          2. 7.28.2.1.2  DCDC2_CTRL (01h)
          3. 7.28.2.1.3  DCDC3_CTRL (02h)
          4. 7.28.2.1.4  DCDC4_CTRL (03h)
          5. 7.28.2.1.5  DCDC1_OP (04h)
          6. 7.28.2.1.6  DCDC1_AVS (05h)
          7. 7.28.2.1.7  DCDC1_LIMIT (06h)
          8. 7.28.2.1.8  DCDC2_OP (07h)
          9. 7.28.2.1.9  DCDC2_AVS (08h)
          10. 7.28.2.1.10 DCDC2_LIMIT (09h)
          11. 7.28.2.1.11 DCDC3_OP (0Ah)
          12. 7.28.2.1.12 DCDC3_AVS (0Bh)
          13. 7.28.2.1.13 DCDC3_LIMIT (0Ch)
          14. 7.28.2.1.14 DCDC4_OP (0Dh)
          15. 7.28.2.1.15 DCDC4_AVS (0Eh)
          16. 7.28.2.1.16 DCDC4_LIMIT (0Fh)
          17. 7.28.2.1.17 VDCDCx Range Settings
          18. 7.28.2.1.18 DCDCx Voltage Settings
        2. 7.28.2.2 LDO Registers
          1. 7.28.2.2.1  LDO1_OP (10h)
          2. 7.28.2.2.2  LDO1_AVS (11h)
          3. 7.28.2.2.3  LDO1_LIMIT (12h)
          4. 7.28.2.2.4  LDO2_OP (13h)
          5. 7.28.2.2.5  LDO2_AVS (14h)
          6. 7.28.2.2.6  LDO2_LIMIT (15h)
          7. 7.28.2.2.7  LDO3_OP (16h)
          8. 7.28.2.2.8  LDO3_AVS (17h)
          9. 7.28.2.2.9  LDO3_LIMIT (18h)
          10. 7.28.2.2.10 LDO4_OP (19h)
          11. 7.28.2.2.11 LDO4_AVS (1Ah)
          12. 7.28.2.2.12 LDO4_LIMIT (1Bh)
          13. 7.28.2.2.13 LDO5 (1Ch)
          14. 7.28.2.2.14 LDO6 (1Dh)
          15. 7.28.2.2.15 LDO7 (1Eh)
          16. 7.28.2.2.16 LDO8 (1Fh)
          17. 7.28.2.2.17 LDO9 (20h)
          18. 7.28.2.2.18 LDO10 (21h)
        3. 7.28.2.3 LDO Voltage Settings
        4. 7.28.2.4 DEVCTRL Registers
          1. 7.28.2.4.1  THRM_REG (22h)
          2. 7.28.2.4.2  CLK32KOUT (23h)
          3. 7.28.2.4.3  DEVCTRL (24h)
          4. 7.28.2.4.4  DEVCTRL2 (25h)
          5. 7.28.2.4.5  I2C_SPI_CFG (26h)
          6. 7.28.2.4.6  KEEP_ON1 (27h)
          7. 7.28.2.4.7  KEEP_ON2 (28h)
          8. 7.28.2.4.8  SET_OFF1 (29h)
          9. 7.28.2.4.9  SET_OFF2 (2Ah)
          10. 7.28.2.4.10 DEF_VOLT (2Bh)
          11. 7.28.2.4.11 LDO Sleep Mode Behavior
          12. 7.28.2.4.12 DEF_VOLT_MAPPING (2Ch)
          13. 7.28.2.4.13 DISCHARGE1 (2Dh)
          14. 7.28.2.4.14 DISCHARGE2 (2Eh)
          15. 7.28.2.4.15 EN1_SET1 (2Fh)
          16. 7.28.2.4.16 EN1_SET2 (30h)
          17. 7.28.2.4.17 EN2_SET1 (31h)
          18. 7.28.2.4.18 EN2_SET2 (32h)
          19. 7.28.2.4.19 EN3_SET1 (33h)
          20. 7.28.2.4.20 EN3_SET2 (34h)
          21. 7.28.2.4.21 EN4_SET1 (35h)
          22. 7.28.2.4.22 EN4_SET2 (36h)
          23. 7.28.2.4.23 PGOOD (37h)
          24. 7.28.2.4.24 PGOOD2 (38h)
          25. 7.28.2.4.25 INT_STS (39h)
          26. 7.28.2.4.26 INT_MSK (3Ah)
          27. 7.28.2.4.27 INT_STS2 (3Bh)
          28. 7.28.2.4.28 INT_MSK2 (3Ch)
          29. 7.28.2.4.29 INT_STS3 (3Dh)
          30. 7.28.2.4.30 INT_MSK3 (3Eh)
          31. 7.28.2.4.31 INT_STS4 (3Fh)
          32. 7.28.2.4.32 INT_MSK4 (40h)
          33. 7.28.2.4.33 GPIO1 (41h)
          34. 7.28.2.4.34 GPIO2 (42h)
          35. 7.28.2.4.35 GPIO3 (43h)
          36. 7.28.2.4.36 GPIO4 (44h)
          37. 7.28.2.4.37 GPIO5 (45h)
          38. 7.28.2.4.38 VMON (46h)
          39. 7.28.2.4.39 LEDA_CTRL1 (47h)
          40. 7.28.2.4.40 LEDA_CTRL2 (48h)
          41. 7.28.2.4.41 LEDA_CTRL3 (49h)
          42. 7.28.2.4.42 LEDA_CTRL4 (4Ah)
          43. 7.28.2.4.43 LEDA_CTRL5 (4Bh)
          44. 7.28.2.4.44 LEDA_CTRL6 (4Ch)
          45. 7.28.2.4.45 LEDA_CTRL7 (4Dh)
          46. 7.28.2.4.46 LEDA_CTRL8 (4Eh)
          47. 7.28.2.4.47 LEDB_CTRL1 (4Fh)
          48. 7.28.2.4.48 LEDB_CTRL2 (50h)
          49. 7.28.2.4.49 LEDB_CTRL3 (51h)
          50. 7.28.2.4.50 LEDB_CTRL4 (52h)
          51. 7.28.2.4.51 LEDB_CTRL5 (53h)
          52. 7.28.2.4.52 LEDB_CTRL6 (54h)
          53. 7.28.2.4.53 LEDB_CTRL7 (55h)
          54. 7.28.2.4.54 LEDB_CTRL8 (56h)
          55. 7.28.2.4.55 LEDC_CTRL1 (57h)
          56. 7.28.2.4.56 LEDC_CTRL2 (58h)
          57. 7.28.2.4.57 LEDC_CTRL3 (59h)
          58. 7.28.2.4.58 LED_CTRL4 (5Ah)
          59. 7.28.2.4.59 LEDC_CTRL5 (5Bh)
          60. 7.28.2.4.60 LEDC_CTRL6 (5Ch)
          61. 7.28.2.4.61 LEDC_CTRL7 (5Dh)
          62. 7.28.2.4.62 LEDC_CTRL8 (5Eh)
          63. 7.28.2.4.63 LED_RAMP_UP_TIME (5Fh)
          64. 7.28.2.4.64 LED_RAMP_DOWN_TIME (60h)
          65. 7.28.2.4.65 LED_SEQ_EN (61h)
          66. 7.28.2.4.66 LEDx DC Current
          67. 7.28.2.4.67 LOADSWITCH (62h)
          68. 7.28.2.4.68 SPARE (63h)
          69. 7.28.2.4.69 VERNUM (64h)
  8. Applications, Implementation, and Layout
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 DC-DC Converters
        1. 8.2.1.1 Design Requirements
        2. 8.2.1.2 Detailed Design Procedure
          1. 8.2.1.2.1 Output Filter Design (Inductor and Output Capacitor)
            1. 8.2.1.2.1.1 Inductor Selection
            2. 8.2.1.2.1.2 Output Capacitor Selection
            3. 8.2.1.2.1.3 Input Capacitor Selection / Input Voltage
            4. 8.2.1.2.1.4 Output Capacitor Table
            5. 8.2.1.2.1.5 Voltage Change on DCDC1 to DCDC4
        3. 8.2.1.3 Application Curves
        4. 8.2.1.4 Layout
          1. 8.2.1.4.1 Layout Guidelines
          2. 8.2.1.4.2 Layout Example
    3. 8.3 Power Supply Recommendations
  9. Device and Documentation Support
    1. 9.1 Device Support
      1. 9.1.1 Development Support
      2. 9.1.2 Device Nomenclature
    2. 9.2 Documentation Support
      1. 9.2.1 Related Documentation
    3. 9.3 Receiving Notification of Documentation Updates
    4. 9.4 Community Resources
    5. 9.5 Trademarks
    6. 9.6 Electrostatic Discharge Caution
    7. 9.7 Glossary
  10. 10Mechanical, Packaging, and Orderable Information

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ
発注情報

Specifications

Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)
MIN MAX UNIT
Voltage All pins except A/PGND pins and pins listed below with respect to AGND –0.3 6 V
VLDO1, VLDO2, VLDO3, VLDO4, VLDO5, VLDO6, VLDO7,VLDO8, VLDO9, VLDO10, VINLDO1210, VINLDO3,
EN1 (DCDC1_SEL), EN2 (DCDC2_SEL), EN3 (DCDC3_SEL), EN4 (DCDC4_SEL)
SLEEP (PWR_REQ), CLK_REQ1, CLK_REQ2
VDDIO, CONFIG1, CONFIG2, DEF_SPI_I2C-GPIO, EN_LS0, EN_LS1, OMAP_WDI, CPCAP_WDI, VCON_CLK with respect to AGND
–0.3 3.6
Pin VDCDC1, VDCDC2, VDCDC3, VDCDC4 with respect to AGND –0.3 3.8
Pins SDA_SDI, SCL_SCK, SDO_GPIO1, SCE_GPIO2, SDA_AVS, SCL_AVS, INT1, 32KCLKOUT,GPIO3 and GPIO4 and GPIO5 if defined as GPIOs with push-pull output (otherwise it is 6-V rated), NRESPWRON if nRESPWRON is push-pull output (otherwise it is 6-V rated) with respect to AGND –0.3 VDDIO + 0.3
VCC VDDIO 6
Current All non power pins 5 mA
Power pins (per pin) 2 A
Operating free-air temperature, TA –40 85 °C
Maximum junction temperature, TJ 125 °C
Storage temperature range, Tstg –65 150 °C
Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under Section 5.3 is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

ESD Ratings

VALUE UNIT
VESD Electrostatic discharge Human body model (HBM), per ANSI/ESDA/JEDEC JS001(1) 1000 V
Charged device model (CDM), per JESD22-C101(2) 250 V
JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)
MIN NOM MAX UNIT
DC-DC CONVERTERS
VIN1, VIN2, VIN3, VIN4 Input voltage for step-down converter DCDC1, DCDC2, DCDC3, DCDC4 2.7 5.5 V
Output voltage for step-down converter DCDC1, DCDC2, DCDC3(1) 0.5 3.8 V
Output voltage for step-down converter DCDC4(1) 0.5 3.8 V
Inductance at L2, L3 0.5 1.0 1.3 μH
Inductance at L1, L4 0.5 1.0 1.3 μH
CIN1 , CIN4 Input capacitance at VIN1 and VIN4 (on each pin) 10 22 μF
CIN2 , CIN3 Input capacitance at VIN2 and VIN3 (on each pin) 4.7 10 μF
COUTDCDC1,2,3 Output capacitance at DCDC1, DCDC2 and DCDC3 4.7 10 22 μF
COUTDCDC4 Output capacitance at DCDC4 10 22 47 μF
LDOs
VINLDO1210 Input voltage range for LDO1, LDO2 and LDO10 1.7 3.6 V
VINLDO4 Input voltage range for LDO4 1.9 5.5 V
VINLDO5 Input voltage range for LDO5 1.9 5.5 V
VLDO1, VLDO2,
VLDO3,
VLDO6,
VLDO7, VLDO8,
VLDO9, VLDO10
Output voltagefor general purpose (GP) LDOs(1) 0.8 3.3 V
VLDO4, VLDO5, Output voltage for RF-LDOs 1.6 3.3 V
CINLDO1210
CINLDO3,
CINLDO4,
CINLDO5,
CINLDO67
CINLDO8
CINLDO8
Input capacitance on LDO supply pins 0.5 μF
CoutLDO4,
CoutLDO5
Output capacitance on LDO4 and LDO5 2.2 10 μF
CoutLDO1,
CoutLDO2
CoutLDO3
CoutLDO6
CoutLDO7
CoutLDO8
Output capacitance LDO1, LDO2, LDO3, LDO6, LDO7, LDO8
These LDOs are capless, the required capacitance can be placed at the load
0.5 10 μF
CoutLDO9
CoutLDO10
Output capacitance LDO9 and LDO10
These LDOs are capless, the required capacitance can be placed at the load
1 10 μF
CoutLDOAO Output capacitance on LDOAO 0.5 10 μF
CVIN_DCDC_ANA Input capacitance on VIN_DCDC_ANA 100 nF
CVCC Input capacitance on VCC 100 nF
CVDDIO Input capacitance on VDDIO 100 nF
TA Operating ambient temperature –40 85 °C
TJ Operating junction temperature –40 125 °C
The maximum output voltage of DCDC1 to DCDC4 and LDO1 to LDO4 can be reduced by a OTP setting to adopt the maximum voltage to the requirements (or maximum ratings) of the load powered. This allows to protect the processor from exceeding the maximum ratings for the core voltage. The value is set at TI upon customer request in nonvolatile memory (OTP).

Thermal Characteristics

THERMAL METRIC(1) TPS65912 UNIT
YFF (DSBGA)
81 PINS
RθJA Junction-to-ambient thermal resistance 41.3 °C/W
RθJCtop Junction-to-case (top) thermal resistance 0.1 °C/W
RθJB Junction-to-board thermal resistance 5.2 °C/W
ψJT Junction-to-top characterization parameter 0.7 °C/W
ψJB Junction-to-board characterization parameter 5.2 °C/W
For more information about traditional and new thermal metrics, see Semiconductor and IC Package Thermal Metrics.

Electrical Characteristics – DCDC1, DCDC2, and DCDC3

TA = –40°C to +85°C, typical values are at TA = +25°C (unless otherwise noted)
PARAMETER TEST CONDITION MIN TYP MAX UNIT
VIN Input Voltage Range 2.3 5.5 V
VDCDC1
VDCDC2
VDCDC3
DCDCx Output Voltage Range Option1; in 12.5-mV steps; RANGE[1,0] = 00 0.5 1.2875 V
Option2; in 12.5-mV steps; RANGE[1,0] = 01 0.7 1.4875 V
Option3; in 25-mV steps; RANGE[1,0] = 10 0.5 2.075 V
Option4; in 50-mV steps; RANGE[1,0] = 11 0.5 3.80 V
IOUT(DCDCx) Continuous Output Current DCDC1 (VINDCDC1 ≥ 2.8 V) 2500 mA
DCDC2 (VINDCDC2 ≥ 2.8 V) 750
DCDC3 (VINDCDC3 ≥ 2.8 V) 1200
DCDC3 for VIN= 2.8 V to 4.5 V;
VDCDC3(max) = 1.4875 V
1600
IQ Quiescent Current ILOAD = 0 mA, DCDCx_MODE = 0, Device not switching; for DCDC1 26 55 μA
ILOAD = 0 mA, DCDCx_MODE = 1, Device switching;
for DCDC1
8 mA
ILOAD < 1 mA, Device not switching; ECO = 1 AND DCDCx_MODE = 0, for DCDC1 9 μA
ILOAD = 0 mA, DCDCx_MODE = 0, Device not switching, for DCDC2 or DCDC3 26 40 μA
ILOAD = 0 mA, DCDCx_MODE = 1, Device switching,
for DCDC2 or DCDC3
8 mA
ILOAD < 1 mA, Device not switching; ECO = 1 AND DCDCx_MODE = 0, for DCDC2 or DCDC3 3 μA
VDCDC1/2/3 Accuracy DCDCx_MODE = 1, VIN = 3.6 V, ILOAD = 0 mA, TA = 25°C, ECO = 0 –2%
DCDCx_MODE = 1, VIN = 3.6 V, ILOAD = 0 mA,
TA = –40°C – 85°C, ECO = 0
–2.5%
DCDCx_MODE = 0, VIN = 3.6 V, ILOAD = 0 mA, TA = 25°C, ECO = 0 –3%
ECO Mode Accuracy VIN = 3.6 V, ILOAD = 0 mA, TA = –40 – 85°C; ECO = 1 AND DCDCx_MODE = 0 –5% 5%
Load Regulation DCDCx_MODE = 1, VIN = 3.6 V;
ILOAD = 120 mA to 1080 mA; for DCDC1
0.01 %/A
DCDCx_MODE = 1, VIN = 3.6 V;
ILOAD = 120 mA to 1080 mA; for DCDC3
0.01
DCDCx_MODE = 1, VIN = 3.6 V;
ILOAD = 50 mA to 450 mA; for DCDC2
0.01
Line Regulation DCDCx_MODE = 1, VIN = 2.5 to 5.5 V,
ILOAD = 0 mA, for DCDC1
0.01 %/V
DCDCx_MODE = 1, VIN = 2.5 to 5.5 V,
ILOAD = 0 mA, for DCDC2 or DCDC3
0.01
fSW Switching Frequency DCDCx_MODE = 0 3500 kHz
DCDCx_MODE = 1, VIN = 3.6 V, VOUT = 1.8 V 2800 kHz
RDS(ON) High-Side FET On-Resistance for DCDC1 with VIN_DCDCx = 3.6 V,
D = 100%
60 100
for DCDC2 and DCDC3 with VIN_DCDCx = 3.6 V,
D = 100%
120 190
RDS(ON) Low-Side FET On-Resistance for DCDC1 with VIN_DCDCx = 3.6 V, D = 100% 60 100
for DCDC2 and DCDC3 with VIN_DCDCx = 3.6 V,
D = 100%
100 160
ILK_HS High-Side FET Leakage Current TJ = 85°C; DCDC1; VINDCDC1 = 4.2 V 20 μA
TJ = 85°C; DCDC2 or DCDC3;
VINDCDC2 = VINDCDC3 = 4.2 V
3
ILK_LS Low-Side FET Leakage Current TJ = 85°C; DCDC1; VINDCDC1 = 4.2 V 20 μA
TJ = 85°C; DCDC2 or DCDC3;
VINDCDC2 = VINDCDC3 = 4.2 V
1
IHS_LIMF High-Side Forward Current Limit VIN = 3.6 V; DCDC1 3200 4280 5300 mA
VIN = 3.6 V; DCDC2 1250 1667 2083
VIN = 3.6 V; DCDC3 2100 2800 3500
ILS_LIMF Low-Side Forward Current Limit VIN = 3.6 V; DCDC1 3200 4280 5300 mA
VIN = 3.6 V; DCDC2 1200 1600 2000
VIN = 3.6 V; DCDC3 1875 2500 3125
tOFF(MIN) Minimum HS FET Off Time VIN = 3.6 V 30 ns
DCDC1 output voltage ripple VIN = 5 V; VOUT = 0.95 V; Io = 1.5 A; L = 1 µH,
RSL = 50 mR; Co = 10 µF
10 mVpp
DCDC2 output voltage ripple VIN = 5 V; VOUT = 2.0 V; Io = 600 mA; L = 1 µH,
RSL = 50 mR; Co = 10 µF
10 mVpp
DCDC3 output voltage ripple VIN = 5 V; VOUT = 3.2 V; Io = 600 mA; L = 1 µH,
RSL = 50 mR; Co = 10 µF
10 mVpp
DCDC1 load transient response VIN = 5 V; VOUT = 0.95 V; Io = 1 mA to 2 A; L = 1 µH,
RSL = 50 mR; Co = 10 µF; dt = 100 ns
25 mV
DCDC2 load transient response VIN = 5 V; VOUT = 1.8 V; Io = 1 mA to 400 mA; L = 1 µH,
RSL = 50 mR; Co = 10 µF; dt = 1 µs
50 mV
DCDC3 load transient response VIN = 5 V; VOUT = 3.2 V; Io = 1 mA to 500 mA; L = 1 µH,
RSL = 50 mR; Co = 10 µF; dt = 1 µs
50 mV
VDCDCPG Power Good Threshold VDCDCx falling 86% 90% 94%
VDCDCx rising 98%
tDCDCPG Power Good Threshold Deglitch 1 ms
tStart Start-up time Time to start switching, measured from end of I2C command enabling converter 32 55 100 μs
tRamp VOUT Ramp UP time Time to ramp from 5% to 95% of VOUT 100 160 250 μs
RDischarge Discharge resistor 250 400 500 Ω
Tpwm PWM clock period for VCON_CLK 30 300 ns
Tsu VCON set up time VCON_PWM to rising edge of VCON_CLK 7 ns
Thd VCON hold time VCON_PWM from rising edge of VCON_CLK 7 ns

Electrical Characteristics – DCDC4

TA = –40°C to +85°C, typical values are at TA = +25°C (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
VIN Input Voltage Range 2.3 5.5 V
VDCDC4 DCDC4 Output Voltage Range Option1; in 12.5-mV steps; RANGE[1,0] = 00 0.5 1.2875 V
Option2; in 12.5-mV steps; RANGE[1,0] = 01 0.7 1.4875
Option3; in 25-mV steps; RANGE[1,0] = 10 0.5 2.075
Option4; in 50-mV steps; RANGE[1,0] = 11 0.5 3.80
IOUT(DCDC4) Continuous Output Current DCDC4 (VINDCDC4 ≥ 2.8 V) 2500 mA
IQ Quiescent Current ILOAD = 0 mA, DCDC4_MODE = 0, Device not switching 26 55 μA
ILOAD = 0 mA, DCDC4_MODE = 1, Device switching; EN_LS[1,0] = 00 or 01 8 mA
ILOAD < 1 mA, Device not switching; ECO = 1 AND DCDC4_MODE = 0 9 μA
VDCDCx Accuracy DCDC4_MODE = 1, VIN = 3.6 V, ILOAD = 0 mA,
TA = 25°C; EN_LS[1,0] = 00 or 01
–2% 2%
DCDC4_MODE = 1, VIN = 3.6 V, ILOAD = 0 mA,
TA = –40°C – 85°C; EN_LS[1,0] = 00 or 01
–2.5% 2.5%
DCDC4_MODE = 0, VIN = 3.6 V, ILOAD = 0 mA,
TA = 25°C
–3% 3%
DCDC4_MODE = 0, VIN = 3.6 V, ILOAD = 0 mA,
TA = –40°C to 85°C
–3% 3%
ECO mode Accuracy ECO = 1 AND DCDCx_MODE = 0 , VIN = 3.6 V,
ILOAD = 0 mA, TA = –40°C to 85°C
–5% 5%
Load Regulation DCDC4_MODE = 1, VIN = 3.6 V; EN_LS[1,0] = 00 or 01;
ILOAD = 250 mA to 2250 mA
0.01 %/A
Line Regulation DCDC4_MODE = 1, VIN = 2.5 -5.5 V, ILOAD = 0 mA; EN_LS[1,0] = 00 or 01 0.01 %/V
fSW Switching Frequency DCDC4_MODE = 0 3500 kHz
DCDC4_MODE = 1, VIN = 3.6 V, VOUT = 1.8 V, EN_LS[1,0] = 00 or 01 2800 kHz
RDS(ON) High-side MOSFET on-resistance VIN_DCDC4 = 3.6 V, 100% duty cycle 60 100
Low-side MOSFET on-resistance VIN_DCDC4 = 3.6 V, 0% duty cycle 60 100
ILK_HS High-side leakage current TJ = 85°C; VINDCDC4 = 4.2 V 20 μA
ILK_LS Low-side leakage current TJ = 85°C; VINDCDC4 = 4.2 V 20 μA
ILIM High-side current limit 2.9 V ≤ VIN_DCDC4 ≤ 5.5 V 3000 4400 5000 mA
ILIM Low-side current limit 2.9 V ≤ VIN_DCDC4 ≤ 5.5 V 3000 3700 4300 mA
tOFF(MIN) Minimum HS FET Off Time VIN = 3.6 V 30 ns
DCDC4 output voltage ripple VIN = 5 V; VOUT = 3.4 V; Io = 2 A; L = 1 µH,
RSL = 50 mR; Co = 10 µF
10 mVpp
DCDC4 load transient response VIN = 5 V; VOUT = 3.4 V; Io = 1 mA to 2 A; L = 1 µH,
RSL = 50 mR; Co = 10 µF; dt = 10 µs
100 mV
VDCDCPG Power Good Threshold VDCDC4 falling 86% 90% 94%
VDCDC1 rising 98%
tDCDCPG Power Good deglitch time 1 ms
tStart Start-up time, (RAMP_TIME=0) Time to start switching, measured from end of I2C command enabling converter;
DCDC4_CTRL:RAMP_TIME = 0
32 55 100 μs
Start-up time, (RAMP_TIME=1) Time to start switching, measured from end of I2C command enabling converter;
DCDC4_CTRL:RAMP_TIME = 1
4 7 14 μs
tRamp VOUT Ramp UP time (RAMP_TIME=0) Time to ramp from 5% to 95% of VOUT ;
DCDC4_CTRL:RAMP_TIME = 0; VOUT = 3.4 V
106 160 250 μs
VOUT Ramp UP time (RAMP_TIME=1) Time to ramp from 5% to 95% of VOUT ;
DCDC4_CTRL:RAMP_TIME = 1; VOUT = 3.4 V
25 40 66 μs
RDischarge Discharge resistor 250 400 500 Ω
Vbyp-on Bypass mode turn-on duty cycle For ENABLE[1,0]=10; turn on is based on the duty cycle of the PWM signal of DCDC4 90% 97.5% 99.5%
Vbyp-off Bypass mode turn-off output voltage threshold For ENABLE[1,0]=10; turn off is based on output voltage above the nominal value 8% 12% 15%

Electrical Characteristics – LDOs

TA = –40°C to +85°C, typical values are at TA = +25°C (unless otherwise noted)
PARAMETER TEST CONDITION MIN TYP MAX UNIT
LDO1 1.7 3.6
LDO2 1.7 3.6
LDO3 1.7 3.6
LDO4 1.9 5.5
VIN Input Voltage LDO5 1.9 5.5 V
LDO6 1.8 5.5
LDO7 1.8 5.5
LDO8 1.8 5.5
LDO9 1.8 5.5
LDO10 1.7 3.6
VLDOx LDO Output Voltage for general-purpose LDOs (1) 0.8 3.3 V
LDO Output Voltage for RF_LDOs 1.6 3.3 V
LDO Voltage Accuracy ECO = 0 –2% 2.5%
ECO = 1 –5% 5%
LDO1 100
LDO2 100
LDO3 100
LDO4 250 mA
LDO5 250
IOUT(LDOx) LDO Continuous Output Current LDO6 100
LDO7 300
LDO8 100
LDO9 300
LDO10 300
ISHORT(LDOx) LDO Current Limit LDO1, LDO2, LDO3, LDO6, LDO8 100 420 mA
LDO4, LDO5 250 650
LDO7 300 750
LDO9, LDO10 300 750
IOUT(LDO1) = 50 mA; VINLDO1 = 1.7 V 500
IOUT(LDO2) = 100 mA; VINLDO2 = 1.7 V 500
IOUT(LDO3) = 80 mA ; VINLDO3 = 1.5 V 200
IOUT(LDO4) = 200 mA; VINLDO4 = 2.0 V 200
VDO(LDOx) Dropout Voltage (2) IOUT(LDO5) = 200 mA; VINLDO5 = 3.0 V 300 mV
IOUT(LDO6) = 100 mA; VINLDO6 = 3.2 V 200
IOUT(LDO7) = 200 mA; VINLDO7 = 3.2 V 200
IOUT(LDO8) = 100 mA; VINLDO8 = 2.9 V 200
IOUT(LDO9) = 300 mA (LDO9); VINLDO9 = 3.1 V 200
IOUT(LDO10) = 300 mA (LDO10); VINLDO10 = 2.0 V 200
Line Regulation VIN = VLDO + 0.5 V and ILOAD = 50 mA –1% 1%
Load Regulation; ECO = 0 LDO1, LDO2, LDO3, LDO6, LDO8:
ILOAD = 1 mA to 100 mA
–0.5% 0.5%
LDO5, LDO7:
ILOAD = 1 mA to 200 mA
–1% 1%
LDO4, LDO9, LDO10:
ILOAD = 1 mA to 300 mA
–1.5% 1.5%
Load Regulation; ECO = 1 LDO1 to LDO10:
ILOAD = 0 mA to 1 mA
–5% 5%
Line Transient Response dV/dt = ±0.5 V/μs –50 50 mV
Load Transient Response dI/dt = 100 mA/μs; 10% to 90% load step –110 110 mV
PSRR Power Supply Rejection Ratio for LDO1 to LDO3 and LDO6 to LDO10 f = 10 Hz to 1 kHz, VIN – VOUT ≥ 0.5 V,
ILOAD = 10 mA to 0.75 × ILOAD(MAX)
47 dB
Power Supply Rejection Ratio for LDO4 and LDO5 f = 10 Hz to 1 kHz, VIN – VOUT ≥ 0.5 V,
ILOAD = 10 mA to 0.75 × ILOAD(MAX)
63
Output voltage noise for LDO1 to LDO3 and LDO6 to LDO10 f = 10 Hz to 100 kHz, VIN – VOUT ≥ 0.5 V, ILOAD ≥ 10 mA 150 µVrms
f = 10 Hz to 10 kHz, VIN – VOUT ≥ 0.5 V, ILOAD ≥ 10 mA 50 µVrms
Output voltage noise for LDO4 and LDO5 f = 10 Hz to 100 kHz, VIN – VOUT ≥ 0.5 V, ILOAD ≥ 10 mA 30 µVrms
f = 10 Hz to 10 kHz, VIN – VOUT ≥ 0.5 V, ILOAD ≥ 10 mA 15 µVrms
Iq Quiescent Current ECO = 1; ILOAD ≤ 1 mA for LDO1, LDO2, LDO3, LDO6, LDO7, LDO8, LDO9, LDO10 8 µA
ECO = 1; ILOAD ≤ 1 mA for LDO4, LDO5 16
ECO = 0; ILOAD ≤ 1 mA for LDO1, LDO2, LDO3, LDO6, LDO7, LDO8, LDO9, LDO10 32
ECO = 0; ILOAD ≤ 1 mA for LDO4, LDO5 40
ECO exit time Minimum wait time before the full current can be drawn after ECO is set 0 50 µs
tRamp VOUT Ramp Up time Time to ramp from 5% to 95% of VOUT ; IOUT = 100 mA 170 µs
VLDOPG PG Trigger VLDOx ≤ VTARGET ; VLDOx falling 87% 90.6% 94.5%
VLDOx rising 98%
tLDOPG Power Good deglitch time 1 ms
RDischarge Discharge resistance at LDO output LDO disabled 200 325 450 Ω
LDO Output voltages are programmed separately
VDO = VIN – VOUT, where VOUT = VOUT(NOM) – 2%

Electrical Characteristics – Digital Inputs, Digital Outputs

TA = –40°C to +85°C, typical values are at TA = +25°C (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN MAX UNIT
VIL Low-Level Input Voltage 0 0.4 V
VIH High-Level Input Voltage All pins except digital interfaces and configuration pins listed below 1.1 VCC V
For CONFIG1, CONFIG2, DEF_SPI_I2C-GPIO, EN_LS0, EN_LS1, EN1 (DCDC1_SEL), EN2 (DCDC2_SEL), EN3 (DCDC3_SEL), EN4 (DCDC4_SEL), SLEEP (PWR_REQ), CPCAP_WDI, VCON_CLK, CLK_REQ1, CLK_REQ2 1.1 3.3
For SDA, SCL, SDA_AVS, SCL_AVS 0.7 × VDDIO VDDIO
For MOSI 1.1 VDDIO
VOL Low-Level Output Voltage IOL= 1 mA; except SDA, SCL, SDA_AVS, SCL_AVS 0 0.2 V
IOL= 3 mA; for SDA, SCL, SDA_AVS, SCL_AVS;
for VDDIO = 1.8 V
0 0.2 × VDDIO
IOL= 3 mA; for SDA, SCL, SDA_AVS, SCL_AVS;
for 2 V < VDDIO ≤ 3.6 V
0 0.4
VOH High-Level Output Voltage For pins configured as push-pull output to VDDIO;
IOH= 1 mA
VDDIO – 0.2 VDDIO V
For pins configured as open-drain output VCC
IOL Low-Level Output Current Except SCL, SDA, AVS_SCL, AVS_SDA 1 mA
For SCL, SDA, AVS_SCL, AVS_SDA 5
IOH High-Level Output Current 1 mA
ILKG Input-Leakage Current Input pins tied to VILor VIH 0.5 µA

Electrical Characteristics – VMON Voltage Monitor, VDDIO, Undervoltage Lockout (UVLO), and LDOAO

TA = –40°C to +85°C, typical values are at TA = +25°C (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
VMON Voltage monitor threshold for VMON_SEL[1,0] = 00;
rising voltage
–2% 3.1 +2% V
Voltage monitor threshold for VMON_SEL[1,0] = 01;
rising voltage
–2% 2.9 +2% V
Voltage monitor threshold for VMON_SEL[1,0] = 10;
rising voltage
–2% 2.8 +2% V
Voltage monitor threshold for VMON_SEL[1,0] = 11;
rising voltage
–2% 2.7 +2% V
VMON hysteresis For falling voltage 250 mV
VDDIO voltage range Voltage applied to VDDIO pin to set the high level voltage of push-pull output stages 1.63 3.6 V
VDDIO undervoltage lockout threshold 1.4 1.625 V
UVLO Internal undervoltage lockout threshold (supply voltage rising) 2.5 V
Internal UVLO threshold hysteresis 200 mV
VLDOAO Output voltage for LDOAO (LDO always on) 2.5 V

Electrical Characteristics – Load Switch

TA = –40°C to +85°C, typical values are at TA = +25°C (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
Voltage between LSI and LSO 5.5 V
LSI input current limit ILIM[1,0] = 00; V(LSI) = 2.7 V to 5.5 V 75 90 115 mA
ILIM[1,0] = 00; V(LSI) = 4.5 V to 5.5 V;
TA = –10°C to + 85°C
85 90 100 mA
ILIM[1,0] = 01; V(LSI) = 2.7 V to 5.5 V 450 485 520 mA
ILIM[1,0] = 01; V(LSI) = 4.5 V to 5.5 V;
TA = –10°C to + 85°C
460 485 500 mA
ILIM[1,0] = 10; V(LSI) = 2.7 V to 5.5 V 720 820 920 mA
ILIM[1,0] = 10; V(LSI) = 2.7 V to 5.5 V;
TA = –10°C to + 85°C
750 820 900 mA
ILIM[1,0] = 11; V(LSI) = 2.7 V to 5.5 V;
not tested in production
2000 2500 3000 mA
Current limit response time 10 µs
Resistance from LSI to LSO When switch closed and operated as load switch with ILIM[1,0] = 11 20 40
Resistance from LSI to LSO When switch closed and operated as load switch with ILIM[1,0] = 00 or 01 or 10 200
Leakage current from LSI to LSO When load switch is open 20 µA
Load switch over-voltage protection on the output (sensed at VDCDC4) For EN_LS[1,0]= 10 or 11, when load switch is used as BYPASS switch 4.18 V

Electrical Characteristics – LED Drivers

TA = –40°C to +85°C, typical values are at TA = +25°C (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
ISINK(LEDx) LEDx output sink current V(LEDA) = V(LEDB) = V(LEDC) = 0.25 V 2 20 mA
Accuracy Absolute accuracy –8% 9.5%
VLO(LEDx) Low level output voltage Output low voltage at LEDx pins, 20 mA 0.25 V
ILKG(LEDx) Output off leakage current Output voltage = 5 V, driver set to OFF 1 μA

Electrical Characteristics – Thermal Monitoring and Shutdown

TA = –40°C to +85°C, typical values are at TA = +25°C (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
Hot-Die Temperature rising threshold THERM_HDSEL[1:0]=00 113 117 136 °C
THERM_HDSEL[1:0]=01 113 121
THERM_HDSEL[1:0]=10 113 125
THERM_HDSEL[1:0]=11 113 130 136
Hot-Die Temperature hysteresis 10 °C
Thermal Shutdown temperature rising threshold 136 148 160 °C
Thermal Shutdown temperature hysteresis 10 °C
Ground current Device in ACTIVE state, Temp = 27 °C, VCCS = 3.8 V 6 µA

Electrical Characteristics – 32-kHz RC Clock

TA = –40°C to +85°C, typical values are at TA = +25°C (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
CLK32KOUT rise and fall time CL = 35 pF 10 ns
Output-frequency low level output voltage CK32KOUT output 32 kHz
Output-frequency accuracy at 25°C –20% 0% +15%
Output duty cycle 40% 50% 60%
Settling time 150 µs

SPI Interface Timing Requirements

MIN MAX UNIT
tcesu Chip select set up time 30 ns
tcehld Chip select hold time 30 ns
tckper Clock cycle time 65 ns
tckhigh Clock high typical pulse duration 20 ns
tcklow Clock low typical pulse duration 20 ns
tsisu Input data set up time, before clock active edge 5 ns
tsihld Input data hold time, after clock active edge 5 ns
tdr Data retention time 15 ns
tCE Time from CE going low to CE going high 65 ns
Capacitive load on pin GPIO1_MISO 30 pF

I2C Interface Timing Requirements(1)

MIN MAX UNIT
f(SCL) SCL Clock Frequency Standard mode 100 kHz
Fast mode 400 kHz
High-speed mode (write operation),
CB – 100 pF max
3.4 MHz
High-speed mode (read operation),
CB – 100 pF max
3.4 MHz
High-speed mode (write operation),
CB – 400 pF max
1.7 MHz
High-speed mode (read operation),
CB – 400 pF max
1.7 MHz
tBUF Bus Free Time Between a STOP and START Condition Standard mode 4.7 μs
Fast mode 1.3 μs
tHD, tSTA Hold Time (Repeated) START
Condition
Standard mode 4 μs
Fast mode 600 ns
High-speed mode 160 ns
tLOW LOW Period of the SCL Clock Standard mode 4.7 μs
Fast mode 1.3 μs
High-speed mode, CB – 100 pF max 160 ns
High-speed mode, CB – 400 pF max 320 ns
tHIGH HIGH Period of the SCL Clock Standard mode 4 μs
Fast mode 600 ns
High-speed mode, CB – 100 pF max 60 ns
High-speed mode, CB – 400 pF max 120 ns
tSU, tSTA Setup Time for a Repeated START Condition Standard mode 4.7 μs
Fast mode 600 ns
High-speed mode 160 ns
tSU, tDAT Data Setup Time Standard mode 250 ns
Fast mode 100 ns
High-speed mode 10 ns
tHD, tDAT Data Hold Time Standard mode 0 3.45 μs
Fast mode 0 0.9 μs
High-speed mode, CB – 100 pF max 0 70 ns
High-speed mode, CB – 400 pF max 0 150 ns
tRCL Rise Time of SCL Signal Standard mode 20 + 0.1 CB 1000 ns
Fast mode 20 + 0.1 CB 300 ns
High-speed mode, CB – 100 pF max 10 40 ns
High-speed mode, CB – 400 pF max 20 80 ns
tRCL1 Rise Time of SCL Signal After a Repeated START Condition and After an Acknowledge BIT Standard mode 20 + 0.1 CB 1000 ns
Fast mode 20 + 0.1 CB 300 ns
High-speed mode, CB – 100 pF max 10 80 ns
High-speed mode, CB – 400 pF max 20 160 ns
tFCL Fall Time of SCL Signal Standard mode 20 + 0.1 CB 300 ns
Fast mode 20 + 0.1 CB 300 ns
High-speed mode, CB – 100 pF max 10 40 ns
High-speed mode, CB – 400 pF max 20 80 ns
tRDA Rise Time of SDA Signal Standard mode 20 + 0.1 CB 1000 ns
Fast mode 20 + 0.1 CB 300 ns
High-speed mode, CB – 100 pF max 10 80 ns
High-speed mode, CB – 400 pF max 20 160 ns
tFDA Fall Time of SDA Signal Standard mode 20 + 0.1 CB 300 ns
Fast mode 20 + 0.1 CB 300 ns
High-speed mode, CB – 100 pF max 10 80 ns
High-speed mode, CB – 400 pF max 20 160 ns
tSU, tSTO Setup Time for STOP Condition Standard mode 4 µs
Fast mode 600 ns
High-speed mode 160 ns
CB Capacitive Load for SDA and SCL 400 pF
Specified by design. Not tested in production.

Typical Characteristics

TPS659121 TPS659122 dc1_eff1_wcs054.gif
DCDC1 VO = 0.9 V PFM Mode
DFE252012 25°C
Figure 5-1 DCDC1 Efficiency vs Output Current / PFM Mode
TPS659121 TPS659122 dc1_eff3_wcs054.gif
DCDC1 VO = 1.1375 V PFM Mode
DFE252012 25°C
Figure 5-3 DCDC1 Efficiency vs Output Current / PFM Mode
TPS659121 TPS659122 dc1_eff5_wcs054.gif
DCDC1 VO = 1.2 V PFM Mode
LQM2NPN-1 µH 25°C
Figure 5-5 DCDC1 Efficiency vs Output Current / PFM Mode
TPS659121 TPS659122 dc2_eff1_wcs054.gif
DCDC2 VO = 1.8 V PFM Mode
LQM2NPN-1 µH 25°C
Figure 5-7 DCDC2 Efficiency vs Output Current / PFM Mode
TPS659121 TPS659122 dc2_eff2_wcs054.gif
DCDC2 VO = 2.25 V PFM Mode
VLS201612-1 µH 25°C
Figure 5-9 DCDC2 Efficiency vs Output Current / PFM Mode
TPS659121 TPS659122 dc2_eff4_wcs054.gif
DCDC2 VO = 2.95 V PFM Mode
VLS201612-1 µH 25°C
Figure 5-11 DCDC2 Efficiency vs Output Current / PFM Mode
TPS659121 TPS659122 dc3_eff1_wcs054.gif
DCDC3 VO = 1.1375 V PFM Mode
DEF252012-1 µH 25°C
Figure 5-13 DCDC3 Efficiency vs Output Current / PFM Mode
TPS659121 TPS659122 dc3_eff3_wcs054.gif
DCDC3 VO = 2.1 V PFM Mode
LQM2NPN-1 µH 25°C
Figure 5-15 DCDC3 Efficiency vs Output Current / PFM Mode
TPS659121 TPS659122 dc3_eff5_wcs054.gif
DCDC3 VO = 3.2 V PFM Mode
DEF25012-1 µH 25°C
Figure 5-17 DCDC3 Efficiency vs Output Current / PFM Mode
TPS659121 TPS659122 dc4_eff1_wcs054.gif
DCDC4 VO = 1.1375 V PFM Mode
DEF25012-1 µH 25°C
Figure 5-19 DCDC4 Efficiency vs Output Current / PFM Mode
TPS659121 TPS659122 dc4_eff3_wcs054.gif
DCDC4 VO = 3.3 V PFM Mode
DEF322512-1 µH 25°C
Figure 5-21 DCDC4 Efficiency vs Output Current / PFM Mode
TPS659121 TPS659122 psrr_ldo123_wcs054.gif
Figure 5-23 LDO1, LDO2, LDO3 PSRR vs Frequency
TPS659121 TPS659122 psrr_ldo4_wcs054.gif Figure 5-25 LDO4 PSRR vs Frequency
TPS659121 TPS659122 psrr_ldo79_wcs054.gif Figure 5-27 LDO9 PSRR vs Frequency
TPS659121 TPS659122 dc1_eff2_wcs054.gif
DCDC1 VO = 0.9 V PFM Mode
DFE252012 25°C
Figure 5-2 DCDC1 Efficiency vs Output Current / PWM Mode
TPS659121 TPS659122 dc1_eff4_wcs054.gif
DCDC1 VO = 1.1375 V PFM Mode
DFE252012 25°C
Figure 5-4 DCDC1 Efficiency vs Output Current / PWM Mode
TPS659121 TPS659122 dc1_eff6_wcs054.gif
DCDC1 VO = 1.2 V PFM Mode
LQM2NPN-1 µH 25°C
Figure 5-6 DCDC1 Efficiency vs Output Current / PWM Mode
TPS659121 TPS659122 dc2_eff6_wcs054.gif
DCDC2 VO = 1.8 V PFM Mode
LQM2NPN-1 µH 25°C
Figure 5-8 DCDC2 Efficiency vs Output Current / PWM Mode
TPS659121 TPS659122 dc2_eff3_wcs054.gif
DCDC2 VO = 2.25 V PFM Mode
VLS201612-1 µH 25°C
Figure 5-10 DCDC2 Efficiency vs Output Current / PFM Mode
TPS659121 TPS659122 dc2_eff5_wcs054.gif
DCDC2 VO = 2.95 V PFM Mode
VLS201612-1 µH 25°C
Figure 5-12 DCDC2 Efficiency vs Output Current / PWM Mode
TPS659121 TPS659122 dc3_eff2_wcs054.gif
DCDC3 VO = 1.1375 V PFM Mode
DEF252012-1 µH 25°C
Figure 5-14 DCDC3 Efficiency vs Output Current / PWM Mode
TPS659121 TPS659122 dc3_eff4_wcs054.gif
DCDC3 VO = 2.1 V PFM Mode
LQM2NPN-1 µH 25°C
Figure 5-16 DCDC3 Efficiency vs Output Current / PWM Mode
TPS659121 TPS659122 dc3_eff6_wcs054.gif
DCDC3 VO = 3.2 V PFM Mode
DEF25012-1 µH 25°C
Figure 5-18 DCDC3 Efficiency vs Output Current / PWM Mode
TPS659121 TPS659122 dc4_eff2_wcs054.gif
DCDC4 VO = 1.1375 V PFM Mode
DEF322512-1 µH 25°C
Figure 5-20 DCDC4 Efficiency vs Output Current / PWM Mode
TPS659121 TPS659122 dc4_eff4_wcs054.gif
DCDC4 VO = 3.3 V PWM Mode
DEF322512-1 µH 25°C
Figure 5-22 DCDC4 Efficiency vs Output Current / PWM Mode
TPS659121 TPS659122 ldo4_psrr_wcs054.gif
VIN _LDO = 3.2 V VOUT = 2.7 V
IOUT = 225 mA
Figure 5-24 LDO4 and LDO5 PSRR vs Frequency
TPS659121 TPS659122 ldo6_psrr_wcs054.gif Figure 5-26 LDO6 and LDO8 PSRR vs Frequency