SWCS048G March   2010  – September 2014 TPS65921

PRODUCTION DATA.  

  1. 1Device Overview
    1. 1.1 Features
    2. 1.2 Applications
    3. 1.3 Description
    4. 1.4 Functional Block Diagram
  2. 2Revision History
  3. 3Terminal Configuration and Functions
    1. 3.1 Signal Descriptions
  4. 4Specifications
    1. 4.1  Absolute Maximum Ratings
    2. 4.2  Handling Ratings
    3. 4.3  Recommended Operating Conditions
    4. 4.4  Thermal Resistance Characteristics for ZQZ Package
    5. 4.5  Crystal Oscillator
    6. 4.6  Clock Slicer
    7. 4.7  32KCLKOUT Output Clock
    8. 4.8  HFCLKOUT Output Clock
    9. 4.9  VDD1 DC-DC Converter
    10. 4.10 VDD2 DC-DC Converter
    11. 4.11 VIO DC-DC Converter
    12. 4.12 VMMC1 Low Dropout Regulator
    13. 4.13 VDAC Low Dropout Regulator
    14. 4.14 VAUX2 Low Dropout Regulator
    15. 4.15 VPLL1 Low Dropout Regulator
    16. 4.16 Internal LDOs
    17. 4.17 Voltage References
    18. 4.18 Battery Threshold Levels
    19. 4.19 Power Consumption
    20. 4.20 USB Charge Pump
    21. 4.21 Hot-Die Detection and Thermal Shutdown
    22. 4.22 USB
      1. 4.22.1  LS/FS Single-Ended Receivers
      2. 4.22.2  LS/FS Differential Receiver
      3. 4.22.3  LS/FS Transmitter
      4. 4.22.4  FS Transmitter
      5. 4.22.5  HS Differential Receiver
      6. 4.22.6  HS Transmitter
      7. 4.22.7  UART Transceiver
      8. 4.22.8  Pullup/Pulldown Resistors
      9. 4.22.9  OTG VBUS
      10. 4.22.10 OTG ID
      11. 4.22.11 USB Charger Detection
    23. 4.23 MADC
      1. 4.23.1 MADC Analog Input Range and Prescaler Ratio
      2. 4.23.2 MADC Power Consumption
    24. 4.24 TPS65921 Interface Target Frequencies
      1. 4.24.1 I2C Timing
    25. 4.25 JTAG Interfaces
      1. 4.25.1 JTAG Interface Timing Requirements
      2. 4.25.2 JTAG Interface Switching Characteristics
      3. 4.25.3 Debouncing Time
  5. 5Detailed Description
    1. 5.1 Functional Block Diagram
    2. 5.2 Clock System
    3. 5.3 32-kHz Oscillator
    4. 5.4 Clock Slicer
    5. 5.5 Power Path
      1. 5.5.1 Step-Down Converters
      2. 5.5.2 LDO
      3. 5.5.3 Power Reference
      4. 5.5.4 Power Use Cases
      5. 5.5.5 Power Timing
        1. 5.5.5.1 Switch On In MASTER_C021_GENERIC Mode
        2. 5.5.5.2 Switch On In SLAVE_C021_GENERIC Mode
        3. 5.5.5.3 Switch-Off Sequence
          1. 5.5.5.3.1 Switch-Off Sequence In Master Modes
          2. 5.5.5.3.2 Switch-Off Sequence in Slave Mode
        4. 5.5.5.4 Charge Pump
      6. 5.5.6 USB Transceiver
      7. 5.5.7 PHY
        1. 5.5.7.1 LS/FS Single-Ended Receivers
        2. 5.5.7.2 LS/FS Differential Receiver
        3. 5.5.7.3 LS/FS Transmitter
        4. 5.5.7.4 HS Differential Receiver
        5. 5.5.7.5 HS Differential Transmitter
        6. 5.5.7.6 UART Transceiver
    6. 5.6 Charger Detection
      1. 5.6.1 USB Battery Charger FSM
      2. 5.6.2 FSM Control Signals
    7. 5.7 MADC
    8. 5.8 JTAG Interfaces
      1. 5.8.1 Keyboard
  6. 6Device and Documentation Support
    1. 6.1 Device Support
      1. 6.1.1 Development Support
      2. 6.1.2 Device Nomenclature
    2. 6.2 Documentation Support
      1. 6.2.1 Community Resources
    3. 6.3 Trademarks
    4. 6.4 Electrostatic Discharge Caution
    5. 6.5 Export Control Notice
    6. 6.6 Glossary
  7. 7Mechanical Packaging and Orderable Information
    1. 7.1 Packaging Information

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ
発注情報

4 Specifications

4.1 Absolute Maximum Ratings(1)

over operating free-air temperature range (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN NOM MAX UNIT
Main battery supply voltage(2) 0.0 5.0 V
Voltage on any input(3) Where supply represents the voltage applied to the power supply pin associated with the input(4) –0.3 1.0 × Supply + 0.3 V
VBUS input –0.3 7 V
Operating ambient temperature (TA) –40 85 °C
Operating junction temperature (TJ) Absolute maximum rating –40 125 °C
Operating junction temperature (TJ) For parametric compliance –40 150 °C
Ambient temperature for parametric compliance With maximum 125°C as junction temperature (TJ) –40 85 °C
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device.
(2) The product will have negligible reliability impact if voltage spikes of 5.2 V occur for a total (cumulative over lifetime) duration of 10 milliseconds.
(3) Excepts VBAT input pads and VBUS pad.
(4) Supply equals the reference level of each pin.

4.2 Handling Ratings

MIN MAX UNIT
Tstg Storage temperature range –55 125 °C
VESD Electrostatic discharge (ESD) performance: Human Body Model (HBM), per ANSI/ESDA/JEDEC JS001(1) –1 1 kV
Charged Device Model (CDM),
per JESD22-C101(2)
All pins –250 250 V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

4.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)
PARAMETER MIN TYP MAX UNIT
Power and USB Path
VBAT/VBAT.USB main battery supply voltage and 2.7 3.6 4.5 V
VBUS 0 7 V
HFCLKIN Input Clock
Frequency 1/tC(HFCLKIN) 19.2, 26 or 38.4 MHz
Pulse duration, HFCLKIN low or high (BP) 0.45 × tC(HFCLKIN) 0.55 × tC(HFCLKIN) ns
HFCLKIN stability –150 150 ppm
Rise time of HFCLKIN (BP) 0 5 ns
Fall time of HFCLKIN (BP) 0 5 ns
Input dynamic range LP/HP (sine wave) 0.3 0.7 1.45 Vpp
BP/PD (square wave) 0 1.85(1) Vpp
Harmonic content of input signal (with 0.7-VPP amplitude): Second component - LP/HP (sine wave) –25 dBc
VIH voltage input high(1) BP (square mode) 0.65 × IO.1P8 V
VIL voltage input low(1) BP (square mode) 0.35 × IO.1P8 V
Crystal Oscillator
Parallel resonance crystal frequency 1/tC(32KHZ) 32.768 kHz
Input voltage, Vin (normal mode) 1.0 1.3 1.55 V
Crystal tolerance at room temperature, 25°C –30 30 ppm
Crystal tolerance versus temperature range (–40°C to 85°C) –200 200 ppm
Crystal quality factor 13k 54k
Maximum drive power 1 µW
Operating drive level 0.5 µW
32KXIN 32KXOUT
duty cycle
Crystal 40% 60%
Square wave 45% 55%
32-kHz clock rise/fall time Square wave with capacitive load equivalent to 30 pF 0.1 × tC(32KHZ) µs
VIH voltage input high Square wave in bypass mode(1) 0.65 × VBRTC V
VIL voltage input low Square wave in bypass mode(1) 0.35 × VBRTC V
DC-DC Converters and LDOs
VDD1.IN, VDD2.IN, VDD3.IN input voltage range for step-down converter VDD1, VDD2, VIO 2.7 3.6 4.5 V
VMMC1.IN input voltage range for LDO VMMC1 Maximum (2.7, output voltage selected + 250 mV) 3.6 4.5 V
VDAC.IN input voltage range for LDO VDAC 2.7 3.6 4.5 V
VAUX12S.IN input voltage range for LDO VAUX2 Maximum (2.7, output voltage selected + 250 mV) 3.6 4.5 V
VINT.IN input voltage range for LDO VINTANA1, VINTANA2, VINTDIG and VRTC Maximum (2.7, output voltage selected + 200 mV) 3.6 4.5 V
VPLLA3R.IN input voltage range for LDO VPLL1 2.7 3.6 4.5 V
VDD1.OUT ouput voltage range for VDD1 step-down converter 0.6 1.45 V
VDD2.OUT ouput voltage range for VDD2 step-down converter 0.6 1.5 V
VIO.OUT ouput voltage range for VIO step-down converter 1.8/1.85 V
VMMC1.OUT output voltage range for LDO VMMC1 1.85 3.15 V
VDAC.OUT output voltage range for LDO VDAC 1.2 1.8 V
VAUX2.OUT output voltage range for LDO VAUX2 1.3 2.8 V
VPLL1.OUT output voltage range for LDO VPLL1 1.0 1.8 V
VINTANA1.OUT output voltage for LDO VINTANA1 1.5 V
VINTANA2.OUT output voltage for LDO VINTANA2 2.5/2.75 V
VINTUSB1P5V.OUT output voltage for LDO VINTUSB1P5 1.35 1.5 1.65 V
VINTUSB1P8V.OUT output voltage for LDO VINTUSB1P8 1.62 1.8 1.98 V
VUSB3P1V.OUT output voltage for LDO VUSB3P1 3.1 V
VINTDIG.OUT output voltage range for LDO VINTDIG 1.35 1.5 1.65 V
VRTC.OUT output voltage range Normal mode 1.45 1.5 1.55 V
Backup mode 1.0 1.3 1.55 V
External Components
Crystal: Nominal load cap on each oscillator input CXIN and CXOUT (2) 9 10 12.5 pF
Crystal ESR (3) 90
Crystal shunt capacitance, CO 1 pF
External coil for VDD1 Value 0.7 1 1.3 µH
DCR 0.1 Ω
Saturation current for TPS65921B 1.8 A
Saturation current for TPS65921B1 2.1 A
External coil for VDD2 and VIO Value 0.7 1 1.3 µH
DCR 0.1 Ω
Saturation current 900 mA
External capacitor for VDD1, VDD2, VIO connected to VDD1.IN, VDD2.IN, VDD3.IN, and VDD1.OUT, VDD2.OUT, VIO.OUT Value(4) 5 10 15 μF
ESR at switching frequency 1 20
 Filtering capacitor for VMCC1.IN, VDAC.IN, VAUX12S.IN, VPPLA3R.IN, VINT.IN, VBAT.USB, VMMC1.OUT, VDAC.OUT, VAUX2.OUT, VPPL1, VINTDIG, VINTANA1, VINTANA2, VRRTC Value 0.3 1 2.7 µF
ESR 20 600
 Filtering capacitor for VUSB3V1, VUSB1V8, VUSB1V5 Value 0.5 2.2 6.5 µF
ESR 20 600
Filtering capacitor for voltage reference Connected from VREF to REFGND 0.3 1 2.7 µF
External capacitor for charge pump and VBUS Filtering capacitor (Connected between VBUS.CPOUT and GND) and called CVBUS 1.41 (The minimum can be reduced to 1.2 µF, provided the charge-pump is only used to supply VUSB3V1 LDO) 4.7 6.5 µF
Flying capacitor (Connected between CP.CAPP and CP.CAPM) called CVBUS.FC 1.32 (The minimum can be reduced to 1.2 µF, provided the charge-pump is only used to supply VUSB3V1 LDO) 2.2 3.08 µF
Filtering capacitor ESR for CVUSB.IN and CVBUS.FC 20
Filtering capacitor CVBUS.IN 5 10 15 µF
External capacitor for power reference filter Filtering capacitor 0.3 1 2.7 µF
(1) Bypass input maximum voltage is the same as the maximum voltage provided for the I/O interface (IO.1P8V).
(2) Nominal load capacitor on each oscillator input defined as CXIN = CXOUT = Cosc × 2 – (Cint + Cpin). Cosc is the load capacitor defined in the crystal oscillator specification, Cint is the internal capacitor, and Cpin is the parallel input capacitor.
(3) The crystal motional resistance Rm relates to the equivalent series resistance (ESR) by the following formula:
SWCS048-E001.gif
Measured with the load capacitance specified by the crystal manufacturer. In fact, if CXIN = CXOUT = 10 pF, then CL = 5 pF. Parasitic capacitance from the package and board must also be considered.
(4) For TPS65921B1, in case of OMAP frequency ≥ 1 GHz, replace 10-µF capacitor on VDD1.OUT by two 22-µF capacitors. One capacitor must be placed near the PMIC and one near the OMAP device.

4.4 Thermal Resistance Characteristics for ZQZ Package

NAME DESCRIPTION °C/W(1)(2) AIR FLOW (m/s)(3)
JC Junction-to-case 20 0.00
JB Junction-to-board 17 0.00
JA Junction-to-free air 46 0.00
PsiJT Junction-to-package top 0.3 0.00
PsiJB Junction-to-board 16 0.00
(1) °C/W = degrees Celsius per watt.
(2) These values are based on a JEDEC-defined 2S2P system (with the exception of the Theta JC [RΘJC] value, which is based on a JEDEC-defined 1S0P system) and will change based on environment as well as application. For more information, see these EIA/JEDEC standards:
  • JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions - Natural Convection (Still Air)
  • JESD51-3, Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages
  • JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages
  • JESD51-9, Test Boards for Area Array Surface Mount Package Thermal Measurements
Power dissipation of 2 W and an ambient temperature of 70ºC is assumed.
(3) m/s = meters per second.

4.5 Crystal Oscillator

When selecting a crystal, the system designer must consider the temperature and aging characteristics of a crystal versus the user environment and expected lifetime of the system. The following table lists the switching characteristics of the oscillator.

Table 4-1 Base Oscillator Switching Characteristics

PARAMETER MIN TYP MAX UNIT
Crystal: Internal capacitor on each input (Cint) 8 10 12 pF
Crystal: Parallel input capacitance (Cpin) 1.0 pF
Parallel resonance crystal frequency 32.768 kHz
Pin-to-pin capacitance 1.6 1.8 pF
Maximum drive power 1.0 µW
Operating drive level 0.5 µW
Crystal quality factor 13k 54k
tSX Start-up time, all conditions 500 ms
Start-up time, 25°C 360
IDDA Active current consumption (configured through the LOJIT bit) High jitter mode 1.8 µA
Low jitter mode 0.8
IDDQ Current consumption Low battery mode (1.2 V) 1 µA
Startup 8

4.6 Clock Slicer

PARAMETER MODE(1) MIN TYP MAX UNIT
Internal coupling capacitor 4.2 5 5.7 pF
Parallel input resistance over 10 to 40 MHz range LP 15 60
HP 30 75
BP/PD 1 100
Parallel input capacitance over 10 to 40 MHz range LP 0.3 0.8 pF
HP 0.3 0.7
BP/PD 0.08 1
BP/PD 40 230
Output duty cycle with VIN = 0.2 VPP LP/HP 40% 50% 60%
Propagation delay LP 4 18 ns
HP 3 15
BP/PD 0.2 3
Power supply rejection ratio sideband (1% RMS of supply voltage added sine 5 MHz) LP/HP 26 dBc
Current consumption at maximum input of 40 MHz LP 175 µA
HP 235 µA
BP/PD 39 nA
Power-up time LP/HP 1 ms
Output peak-to-peak jitter with an input peak-to-peak jitter < 0.1% and for jitter frequency below 300 kHz LP/HP 0.2%
Output peak-to-peak jitter with an input peak-to-peak jitter < 0.1% and for jitter frequency above 300 kHz LP/HP 1.0%
(1) Bypass input maximum voltage is the same as the maximum voltage provided for the I/O interface.

4.7 32KCLKOUT Output Clock

NAME PARAMETER DESCRIPTION MIN TYP MAX UNIT
f Frequency 32.768 kHz
CL Load capacitance 40 pF
VOUT Output clock voltage, depending on output reference level IO.1P8 1.8(1) V
VOH Voltage output high VOUT – 0.45 VOUT V
VOL Voltage output low 0 0.45 V
(1) The output voltage depends on output reference level which is IO.1P8.

The following table details the output clock timing characteristics. The following figure shows the 32KCLKOUT output clock waveform.

NAME PARAMETER DESCRIPTION MIN TYP MAX UNIT
CK0 1/tC(32KCLKOUT) Frequency 32.768 kHz
CK1 tW(32KCLKOUT) Pulse duration, 32KCLKOUT low or high 0.40 × tC(32KCLKOUT) 0.60 × tC(32KCLKOUT) ns
CK2 tR(32KCLKOUT) Rise time, 32KCLKOUT (1) 16 ns
CK3 tF(32KCLKOUT) Fall time, 32KCLKOUT (1) 16 ns
SSB Phase Noise At 1-kHz offset from the carrier –110 dBc/Hz
(1) The output capacitive load is equivalent to 30 pF.
SWCS048-001.gifFigure 4-1 32KCLKOUT Output Clock

4.8 HFCLKOUT Output Clock

The following table summarizes the HFCLKOUT output clock electrical characteristics.

Table 4-2 HFCLKOUT Output Clock Electrical Characteristics

NAME PARAMETER DESCRIPTION MIN TYP MAX UNIT
f Frequency 19.2, 26, or 38.4 MHz
CL Load capacitance 30 pF
VOUT Output clock voltage, depending on output reference level IO.1P8 1.8(1) V
VOH Voltage output high VOUT – 0.45 VOUT V
VOL Voltage output low 0 0.45 V
(1) The output voltage depends on output reference level which is IO.1P8.

The following table details the HFCLKOUT output clock timing characteristics.

Table 4-3 HFCLKOUT Output Clock Switching Characteristics

NAME PARAMETER DESCRIPTION MIN TYP MAX UNIT
CHO1 1/tC(HFCLKOUT) Frequency 19.2, 26, or 38.4 MHz
CHO2 tW(HFCLKOUT) Pulse duration, HFCLKOUT low or high 0.4 × tC(HFCLKOUT) 0.6 × tC(HFCLKOUT) ns
CHO3 tR(HFCLKOUT) Rise time, HFCLKOUT, low drive(1) ns
- Load: 5 pF 3.8
- Load: 10 pF 5.5
Rise time, HFCLKOUT, high drive(1)
- Load: 10 pF 2.9
- Load: 20 pF 5.0
CHO4 tF(HFCLKOUT) Fall time, HFCLKOUT, low drive(1) ns
- Load: 5 pF 3.5
- Load: 10 pF 5.1
Fall time, HFCLKOUT, high drive(1)
- Load: 10 pF 2.7
- Load: 20 pF 4.7
(1) Low drive: MISC_CFG[CLK_HF_DRV] = 0 (default)
High drive: MISC_CFG[CLK_HF_DRV] = 1

Figure 4-2 shows the HFCLKOUT output clock waveform.

SWCS048-002.gifFigure 4-2 HFCLKOUT Output Clock

Figure 4-3 shows the 32KCLKOUT and HFCLKOUT clock stabilization time.

SWCS048-003.gif
A. Tstartup, Delay1, Delay2, and Delay3 depend on the boot mode (See Power timing chapter).
Figure 4-3 32KCLKOUT and HFCLKOUT Clock Stabilization Time
SWCS048-004.gifFigure 4-4 HFCLKOUT Behavior

4.9 VDD1 DC-DC Converter

PARAMETER COMMENTS MIN TYP MAX UNIT
Input voltage range 2.7 3.6 4.5 V
Output voltage 0.6 1.45 V
Output voltage step 0.6 to 1.45 V 12.5 mV
Output accuracy(1) 0.6 to < 0.8 V –6% 6%
0.8 to 1.45 V –5% 5%
Switching frequency 3.2 MHz
Conversion efficiency(2) IO = 10 mA, sleep 82%
100 mA < IO < 400 mA 85%
400 mA < IO < 600 mA 80%
600 mA < IO < 800 mA 75%
Output current Active mode
Output voltage 0.6 V to 1.45 V
for TPS65921B/TPS65921B1
1.2 A
Active mode
Output Voltage 1.2 V to 1.45 V
for TPS65921B1
1.4 A
Sleep mode 10 mA
Ground current (IQ) Off at 30°C 3 µA
Sleep, unloaded 30 50
Active, unloaded, not switching 300
Short-circuit current VIN = VMAX 2.2 A
Load regulation 0 < IO < IMAX 20 mV
Transient load regulation at 1.2 A(3) IO = 10 mA to (IMAX/3) + 10 mA,
maximum slew rate is IMAX/3/100 ns
–65 50 mV
Line regulation 10 mV
Transient line regulation 300 mVPP ac input, 10-μs rise and fall time 10 mV
Start-up time 0.25 1 ms
Recovery time From sleep to on with constant load < 10 100 µs
Slew rate (rising or falling)(4) 4 8 16 mV/µs
Output ripple Active (PWM and PSM) –10 10 mV
Sleep (PFM) –2% 2%
Current limit for PWM/PSM mode switch. PSM is below this limit, and PWM is above this limit. Active mode 150 200 mA
Overshoot Softstart 5%
Output pulldown resistance In Off mode 500 700 Ω
(1) Accuracy includes all variations (line and load regulations, line and load transients, temperature, and process).
(2) VBAT = 3.6 V, VDD1 = 1.2 V, Fs = 3.2 MHz, L = 1 μH, LDCR = 100 mΩ, C = 10 μF, ESR = 10 mΩ
(3) For negative transient load, the output voltage must discharge completely and settle to its final value within 100 ms. Transient load is specified at Vout max with a ±50% external capacitor accuracy and includes temperature and process variation.
(4) Load current varies proportional to the output voltage. The slew rate is for increasing and decreasing voltages and the load current is 1.1 A.

4.10 VDD2 DC-DC Converter

PARAMETER COMMENTS MIN TYP MAX UNIT
Input voltage range 2.7 3.6 4.5 V
Output voltage 0.6 1.0 1.5 V
Output voltage step 0.6 to 1.45 V 12.5 mV
Output accuracy(1) 0.6 to < 0.8 V –6% 6%
0.8 to 1.45 V –5% 5%
Switching frequency 3.2 MHz
Conversion efficiency(2) IO = 10 mA, sleep 82%
100 mA < IO < 300 mA 85%
300 mA < IO < 500 mA 80%
Output current Active mode 600 mA
Sleep mode 10 mA
Ground current (IQ) Off at 30°C 1 µA
Sleep, unloaded 30 50
Active, unloaded, not switching 300
Short-circuit current VIN = VMAX 1.2 A
Load regulation 0 < IO < IMAX 20 mV
Transient load regulation(3) IO = 10 mA to (IMAX/3) + 10 mA, maximum slew rate is IMAX/3/100 ns –65 50 mV
Line regulation 10 mV
Transient line regulation 300 mVPP ac input, 10-μs rise and fall time 10 mV
Output pulldown resistance In OFF mode 500 700 Ω
Start-up time 0.25 1 ms
Recovery time From sleep to on with constant load 25 100 µs
Slew rate (rising or falling)(4) 4 8 16 mV/µs
Output ripple Active (PWM and PSM) –10 10 mV
Sleep (PFM) –2% 2%
Current limit for PWM/PSM mode switch. PSM is below this limit, and PWM is above this limit. Active mode 150 200 mA
Overshoot Softstart 5%
(1) Accuracy includes all variations (line and load regulations, line and load transients, temperature, and process).
(2) VBAT = 3.8 V, VDD1 = 1.3 V, Fs = 3.2 MHz, L = 1 μH, LDCR = 100 mΩ, C = 10 μF, ESR = 10 mΩ
(3) Output voltage must be able to discharge the load current completely and settle to its final value within 100 μs.
(4) Load current varies proportional to the output voltage. The slew rate is for increasing and decreasing voltages and the load current is 1.1 A.

4.11 VIO DC-DC Converter

PARAMETER COMMENTS MIN TYP MAX UNIT
Input voltage range 2.7 3.6 4.5 V
Output voltage(1) 1.8
1.85
V
Output accuracy DC accuracy only –3% 3%
Including all variations (line and load regulations, line and load transients, temperature, and process) –4% 4%
Switching frequency 3.2 MHz
Conversion efficiency(2) IO = 10 mA, sleep 85%
100 mA < IO < 400 mA 85%
400 mA < IO < 600 mA 80%
Output current On mode 700 mA
Sleep mode 10 mA
Ground current (IQ) Off at 30°C 1 µA
Sleep, unloaded 30 50
Active, unloaded, not switching 300
Load regulation 0 < IO < IMAX 20 mV
Line regulation 10 mV
Transient load regulation IO = 10 mA to (IMAX/3) + 10 mA, maximum slew rate is IMAX/3/100 ns –65 50 mV
Transient line regulation 300 mVPP ac input, 10-μs rise and fall time 10 mV
Start-up time 0.25 1 ms
Recovery time From sleep to on with constant load < 10 100 µs
Slew rate (rising or falling) 4 8 16 mV/µs
Output ripple Active (PWM and PSM) –10 10 mV
Sleep (PFM) –2% 2%
Current limit for PWM/PSM mode switch. PSM is below this limit, and PWM is above this limit. Active mode 150 200 mA
Overshoot Softstart 5%
Output pulldown resistance In Off mode 500 700 Ω
(1) This voltage is tuned according to the platform and transient requirements.
(2) VBAT = 3.8 V, VIO = 1.8 V, Fs = 3.2 MHz, L = 1 μH, LDCR = 100 mΩ, C = 10 μF, ESR = 10 mΩ

4.12 VMMC1 Low Dropout Regulator

PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
VIN Input voltage 2.7 3.6 5.5 V
VOUT Output voltage including all variations (line and load regulations, line and load transients, temperature, and process) 1.7945
2.7645
2.91
3.0555
1.85
2.85
3.0
3.15
1.9055
2.9355
3.09
3.2445
V
IOUT Rated output current On mode 220 mA
Low-power mode 5
DC load regulation On mode: 0 < IO < IMAX 20 mV
DC line regulation On mode, VIN = VINmin to VINmax at IOUT = IOUTmax 3 mV
Turn-on time IOUT = 0, CL = 1 μF (within 10% of VOUT) 100 µs
Wake-up time Full load capability 10 µs
Ripple rejection f < 10 kHz 50 dB
10 kHz < f < 100 kHz 40
f = 1 MHz 25
VIN = VOUT + 1 V, IO = IMAX
Ground current On mode, IOUT = 0 70 µA
On mode, IOUT = IOUTmax 290
Low-power mode, IOUT = 0 17
Low-power mode, IOUT = 5 mA 20
Off mode at 55°C 1
VDO Dropout voltage(1) On mode, IOUT = IOUTmax 250 mV
Transient load regulation(2) ILOAD: IMIN – IMAX –40 40 mV
Slew: 40 mA/μs
Transient line regulation VIN drops 500 mV 10 mV
Slew: 40 mV/μs
Overshoot Softstart 3%
Pulldown resistance Default in off mode 250 320 450 Ω
(1) For nominal output voltage
(2) Transient load regulation is always included in the overall accuracy of the selected output voltage option. For voltage levels that have a tighter output voltage specification than the transient load regulation, follow the output voltage specification.

4.13 VDAC Low Dropout Regulator

PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
VIN Input voltage 2.7 3.6 4.5 V
VOUT Output voltage including all variations (line and load regulations, line and load transients, temperature, and process) 1.164
1.261
1.746
12
1.3
1.8
1.236
1.339
1.854
V
IOUT Rated output current On mode 70 mA
Low-power mode 5
DC load regulation On mode: 0 < IO < IMAX 20 mV
DC line regulation On mode, VIN = VINmin to VINmax at IOUT = IOUTmax 3 mV
Turn-on time IOUT = 0, CL = 1 μF (within 10% of VOUT) 100 µs
Wake-up time Full load capability 10 µs
Ripple rejection f < 20 kHz 65 dB
20 kHz < f < 100 kHz 45
f = 1 MHz 40
VIN = VOUT + 1 V, IO = IMAX
Output noise 200 Hz < f < 5 kHz 400 nV/√Hz
5 kHz < f < 400 kHz 125
400 kHz < f < 10 MHz 50
Ground current On mode, IOUT = 0 150 µA
On mode, IOUT = IOUTmax 350
Low-power mode, IOUT = 0 15
Low-power mode, IOUT = 1 mA 25
Off mode at 55°C 1
VDO Dropout voltage(1) On mode, IOUT = IOUTmax 250 mV
Transient load regulation(2) ILOAD: IMIN – IMAX –40 40 mV
Slew: 60 mA/μs
Transient line regulation VIN drops 500 mV 10 mV
Slew: 40 mV/μs
Overshoot Softstart 3%
Pull down resistance Default in off mode 250 320 450 Ω
(1) For nominal output voltage
(2) Transient load regulation is always included in the overall accuracy of the selected output voltage option. For voltage levels that have a tighter output voltage specification than the transient load regulation, follow the output voltage specification.

4.14 VAUX2 Low Dropout Regulator

PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
VIN Input voltage 2.7 3.6 4.5 V
VOUT Output voltage including all variations (line and load regulations, line and load transients, temperature, and process) –3% 1.3
1.5
1.7
1.8
1.9
2.0
2.1
2.2
2.3
2.4
2.5
2.8
+3% V
IOUT Rated output current On mode 100 mA
Low-power mode 5
DC load regulation On mode: 0 < IO < IMAX 20 mV
DC line regulation On mode, VIN = VINmin to VINmax at IOUT = IOUTmax 3 mV
Turn-on time IOUT = 0, CL = 1 μF (within 10% of VOUT) 100 µs
Wake-up time Full load capability 10 µs
Ripple rejection f < 10 kHz 50 dB
10 kHz < f < 100 kHz 40
f = 1 MHz 30
VIN = VOUT + 1 V, IO = IMAX
Ground current On mode, IOUT = 0 70 µA
On mode, IOUT = IOUTmax 170
Low-power mode, IOUT = 0 17
Low-power mode, IOUT = 5 mA 20
Off mode at 55°C 1
VDO Dropout voltage(1) On mode, IOUT = IOUTmax 250 mV
Transient load regulation(2) ILOAD: IMIN – IMAX –40 40 mV
Slew: 40 mA/μs
Transient line regulation VIN drops 500 mV 10 mV
Slew: 40 mV/μs
Overshoot Softstart 3%
Pulldown resistance Default in off mode 250 320 450 Ω
Configurable as HighZ in off mode 100
(1) For nominal output voltage
(2) Transient load regulation is always included in the overall accuracy of the selected output voltage option. For voltage levels that have a tighter output voltage specification than the transient load regulation, follow the output voltage specification.

4.15 VPLL1 Low Dropout Regulator

PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
VIN Input voltage 2.7 3.6 4.5 V
VOUT Output voltage including all variations (line and load regulations, line and load transients, temperature, and process) 0.97 1.0 1.03 V
1.164 1.2 1.236
1.261 1.3 1.339
1.746 1.8 1.854
IOUT Rated output current On mode 40 mA
Low-power mode 5
DC load regulation On mode: 0 < IO < IMAX 20 mV
DC line regulation On mode, VIN = VINmin to VINmax at IOUT = IOUTmax 3 mV
Turn-on time IOUT = 0, CL = 1 μF (within 10% of VOUT) 100 µs
Wake-up time Full load capability 10 µs
Ripple rejection f < 10 kHz 50 dB
10 kHz < f < 100 kHz 40
f = 1 MHz 30
VIN = VOUT + 1 V, IO = IMAX
Ground current On mode, IOUT = 0 70 µA
On mode, IOUT = IOUTmax 110
Low-power mode, IOUT = 0 15
Low-power mode, IOUT = 1 mA 16
Off mode at 55°C 1
VDO Dropout voltage(1) On mode, IOUT = IOUTmax 250 mV
Transient load regulation(2) ILOAD: IMIN – IMAX –40 40 mV
Slew: 60 mA/μs
Transient line regulation VIN drops 500 mV 10 mV
Slew: 40 mV/μs
Overshoot Softstart 3%
Pulldown resistance Default in off mode 250 320 450 Ω
(1) For nominal output voltage
(2) Transient load regulation is always included in the overall accuracy of the selected output voltage option. For voltage levels that have a tighter output voltage specification than the transient load regulation, follow the output voltage specification.

4.16 Internal LDOs

Internal LDOs (except USBCP, which is a boost) are described in following table.

NAME USAGE TYPE VOLTAGE RANGE (V) DEFAULT VOLTAGE (V) MAXIMUM CURRENT
VINTANA1 Internal LDO 1.5 1.5 50 mA
VINTANA2 Internal LDO 2.5, 2.75 2.75 250 mA
VINTDIG Internal LDO 1.5 1.5 100 mA
USBCP Internal Charge pump 5 5 100 mA
VUSB1V5 Internal LDO 1.5 1.5 30 mA
VUSB1V8 Internal LDO 1.8 1.8 30 mA
VUSB3V1 Internal LDO 3.1 3.1 14 mA
VRRTC Internal LDO 1.5 1.5 30 mA
VBRTC Internal LDO 1.3 1.3 100 μA

4.17 Voltage References

PARAMETER TEST CONDITONS MIN TYP MAX UNIT
Internal bandgap reference voltage On mode, measured through TESTV terminal 1.272 1.285 1.298 V
Reference voltage (VREF terminal) On mode 0.7425 0.75 0.7575 V
Retention mode reference On mode 0.492 0.5 0.508 V
IREF NMOS sink 0.9 1.0 1.1 µA
Ground current Bandgap 25 µA
IREF block 20
Preregulator 15
VREF buffer 10
Retention reference buffer 10
Output spot noise 100 Hz 1 μV/√Hz
A-weighted noise (rms) 200 nV (rms)
P-weighted noise (rms) 150 nV (rms)
Integrated noise 20 Hz to 100 kHz 2.2 µV
IBIAS trim bit LSB 0.1 µA
Ripple rejection < 1 MHz from VBAT 60 dB
Start-up time 1 ms

4.18 Battery Threshold Levels(1)

PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
Main battery charged threshold VMBCH Measured on VBAT terminal 3.14 3.2 3.3 V
Main battery low threshold VMBLO Measured on VBAT terminal (monitored on terminal ONNOFF) 2.55 2.7 2.8 V
Main battery high threshold VMBHI Measured on terminal VBAT 2.5 2.65 3.0 V
Batteries not present threshold VBNPR Measured on terminal VBAT 1.6 1.8 2.6 V
Measured on terminal VBAT in slave mode 1.95 2.1 2.6 V
(1) Backup ball must always be tied to ground.

4.19 Power Consumption

The typical power consumption is obtained in the nominal operating conditions and with the TPS65921 standalone.

MODE DESCRIPTION TYPICAL CONSUMPTION
C021 boot mode WAIT-ON The phone is apparently off for the user, a main battery is present and well-charged. The RTC registers, registers in backup domain are maintained. The wakeup capabilities (like the PWRON button) are available. VBAT = 3.8 V and Quartz present 64 µA × 3.8 V = 243.2 μW
ACTIVE No Load HFCLK = 26 MHz Subsystem is powered by the main battery. All supplies are enabled with no external load, internal reset is released, and the associated processor is running. USB interrupt handler consumes 433 µA (typ). VBAT = 3.8 V (2995 + 433) µA × 3.8 V = 13026 µW
ACTIVE No Load HFCLK = 38.4 MHz (3879 + 433) µA × 3.8 V = 16386 µW
SLEEP No Load The main battery powers subsystem. Selected supplies are enabled but in low-consumption mode and associated processor is in low-power mode. VBAT = 3.8 V 492 µA × 3.8 V = 1870 µW

4.20 USB Charge Pump

PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
VIN Input voltage On mode: VIN = VBAT 2.7 3.6 4.5 V
VO Output voltage 4.625 5.0 5.25 V
Iload Rated output current VBAT > 3 V at VBUS 0 100 mA
2.7 V < VBAT < 3 V, at VBUS 0 50
Efficiency ILOAD = 100 mA, VBAT = 3.6 V 55%
Setting time ILOADmax/2 to ILOADmax in 5 μs 100 400 µs
Start-up time 3 ms
Short-circuit limitation current 250 350 450 mA
DC load regulation ILOADmin to ILOADmax 250 500 mV
DC line regulation 3.0 V to VBATmax 250 350 mV
ILOAD = 100 mA
Transient load regulation IVBUS_5Vmax/2 – IVBUS_5Vmax 300 350 mV
50 μs, C = 2 × 4.7 μF
0 – IVBUS_5Vmax/2, 50 μs, C = 2 × 4.7 μF 350
Transient line regulation VBATmin to VBATmax in 50 μs, C = 2 × 4.7 μF 300 350 mV

4.21 Hot-Die Detection and Thermal Shutdown

PARAMETER THRESHOLD (NOMINAL)(1)
Thermal hot-die selection THERM_HDSEL[1:0] Threshold (nominal)(1)
00 (1st hot-die threshold) Rising temp: 120°C
Falling temp: 111°C
01 (2nd hot-die threshold) Rising temp: 130°C
Falling temp: 121°C
10 (3rd hot-die threshold) Rising temp: 140°C
Falling temp: 131°C
11 (4th hot-die threshold) Not used
Thermal shutdown enable Threshold (nominal)(1) - Rising temp: 150°C
Threshold (nominal)(1) - Falling temp: 140°C
(1) The minimum/maximum range is ±5%

4.22 USB

4.22.1 LS/FS Single-Ended Receivers

PARAMETER COMMENTS MIN TYP MAX UNIT
USB Single-Ended Receivers
Skew between VP and VM SKWVP_VM Driver outputs unloaded –2 0 2 ns
Single-ended hysteresis VSE_HYS 50 mV
High (driven) VIH 2 V
Low VIL 0.8 V
Switching threshold VTH 0.8 2 V

4.22.2 LS/FS Differential Receiver

PARAMETER COMMENTS MIN TYP MAX UNIT
Differential input sensitivity VDI Ref. USB2.0 200 mV
Differential common mode range VCM Ref. USB2.0 0.8 2.5 V

4.22.3 LS/FS Transmitter

PARAMETER COMMENTS MIN TYP MAX UNIT
Low VOL Ref. USB2.0 0 300 mV
High (driven) VOH Ref. USB2.0 2.8 3.6 V
Output signal crossover voltage VCRS Ref. USB2.0, covered by eye diagram 1.3 2.0 V
Rise time TFR Ref. USB2.0, covered by eye diagram 75 300 ns
Fall time TFF 75 300 ns
Differential rise and fall time matching TFRFM 80% 125%
Low-speed data rate TFDRATE Ref. USB2.0, covered by eye diagram 1.4775 1.5225 Mbps
Source jitter total (including frequency tolerance):
- To next transition TDJ1 Ref. USB2.0, covered by eye diagram –25 25 ns
- For paired transitions TDJ2 –10 10
Source SE0 interval of EOP TFEOPT Ref. USB2.0, covered by eye diagram 1.25 1.5 µs
Downstream eye diagram Ref. USB2.0, covered by eye diagram
Differential common mode range VCM Ref. USB2.0 0.8 2.5 V

4.22.4 FS Transmitter

PARAMETER COMMENTS MIN TYP MAX UNIT
Low VOL Ref. USB2.0 0 300 mV
High (driven) VOH Ref. USB2.0 2.8 3.6 V
Output signal crossover voltage VCRS Ref. USB2.0, covered by eye diagram 1.3 2.0 V
Rise time TFR Ref. USB2.0 4 20 ns
Fall time TFF Ref. USB2.0 4 20 ns
Differential rise and fall time matching TFRFM Ref. USB2.0, covered by eye diagram 90% 111.11%
Driver output resistance ZDRV Ref. USB2.0 28 44 Ω
Full-speed data rate TFDRATE Ref. USB2.0, covered by eye diagram 11.97 12.03 Mbps
Source jitter total (including frequency tolerance):
- To next transition TDJ1 Ref. USB2.0, covered by eye diagram –2 2 ns
- For paired transitions TDJ2 –1 1
Source SE0 interval of EOP TFEOPT Ref. USB2.0, covered by eye diagram 160 175 ns
Downstream eye diagram Ref. USB2.0, covered by eye diagram
Upstream eye diagram

4.22.5 HS Differential Receiver

PARAMETER COMMENTS MIN TYP MAX UNIT
High-speed squelch detection threshold (differential signal amplitude) VHSSQ Ref. USB2.0 100 150 mV
High-speed disconnect detection threshold (differential signal amplitude) VHSDSC Ref. USB2.0 525 625 V
High-speed differential input signaling levels Ref. USB2.0, specified by eye pattern templates mV
High-speed data signaling common mode voltage range (guidelines for receiver) VHSCM Ref. USB2.0 –50 600 mV
Receiver jitter tolerance Ref. USB2.0, specified by eye pattern templates 150 ps

4.22.6 HS Transmitter

PARAMETER COMMENTS MIN TYP MAX UNIT
High-speed idle level VHSOI Ref. USB2.0 –10 10 mV
High-speed data signaling high VHSOH Ref. USB2.0 360 440 mV
High-speed data signaling low VHSOL Ref. USB2.0 –10 10 mV
Chirp J level (differential voltage) VCHIRPJ Ref. USB2.0 700 1100 mV
Chirp K level (differential voltage) VCHIRPK Ref. USB2.0 –825 –500 mV
Rise Time (10% – 90%) THSR Ref. USB2.0, covered by eye diagram 500
Fall time (10% – 90%) THSR Ref. USB2.0, covered by eye diagram 500
Driver output resistance (which also serves as high-speed termination) ZHSDRV Ref. USB2.0 40.5 49.5 Ω
High-speed data range THSDRAT Ref. USB2.0, covered by eye diagram 479.76 480.24 Mbps
Data source jitter Ref. USB2.0, covered by eye diagram
Downstream eye diagram Ref. USB2.0, covered by eye diagram
Upstream eye diagram Ref. USB2.0, covered by eye diagram

4.22.7 UART Transceiver

PARAMETER MIN MAX UNIT
tPH_DP_CON Phone D+ connect time 100 ms
tPH_DISC_DET Phone D+ disconnect time 150 ms
fUART_DFLT Default UART signaling rate (typical rate) 9600 bps
PARAMETER COMMENTS MIN TYP MAX UNIT
UART Transmitter CEA-2011
Phone UART edge rates tPH_UART_EDGE DP_PULLDOWN asserted 1 ms
Serial interface output high VOH_SER ISOURCE = 4 mA 2.4 3.3 3.6 V
Serial interface output low VOL_SER ISINK = –4 mA 0 0.1 0.4 V
UART Receiver CEA-2011
Serial interface input high VIH_SER DP_PULLDOWN asserted 2.0 V
Serial interface input low VIL_SER DP_PULLDOWN asserted 0.8 V
Switching threshold VTH 0.8 2.0 V

4.22.8 Pullup/Pulldown Resistors

PARAMETER COMMENTS MIN TYP MAX UNIT
Pullup Resistors
Bus pullup resistor on upstream port (idle bus) RPUI Bus idle 0.9 1.1 1.575
Bus pullup resistor on upstream port (receiving) RPUA Bus driven/driver's outputs unloaded 1.425 2.2 3.09
High (floating) VIHZ Pullups/pulldowns on both DP and DM lines 2.7 3.6 V
Phone D+ pullup voltage VPH_DP_UP Driver's outputs unloaded 3.0 3.3 3.6 V
Pulldown Resistors
Phone D+/– pulldown RPH_DP_DWN Driver's outputs unloaded 14.25 18 24.8
RPH_DM_DWN
High (floating) VIHZ Pullups/pulldowns on both DP and DM lines 2.7 3.6 V
D+/– Data line
Upstream facing port CINUB [1.0] 22 75 pF
On-the-go device leakage VOTG_DATA_LKG [2] 0.342 V
Input impedance exclusive of pullup/pulldown  ZINP Driver’s outputs unloaded 300

4.22.9 OTG VBUS

PARAMETER COMMENTS MIN TYP MAX UNIT
VBUS Wakeup Comparator
VBUS wake-up delay DELVBUS_WK_UP 15 µs
VBUS Comparators
A-device session valid VA_SESS_VLD 0.8 1.1 1.4 V
A-device VBUS valid VA_VBUS_VLD 4.4 4.5 4.625 V
B-device session end VB_SESS_END 0.2 0.5 0.8 V
B-device session valid VB_SESS_VLD 2.1 2.4 2.7 V
VBUS Line
A-device VBUS input impedance to ground RA_BUS_IN SRP (VBUS pulsing) capable A-device not driving VBUS 13.77 100
B-device VBUS SRP pulldown RB_SRP_DWN 5.25 V / 8 mA, pullup voltage = 3 V 0.656 10
B-device VBUS SRP pullup RB_SRP_UP (5.25 V – 3 V) / 8 mA, pullup voltage = 3 V 0.85 1.3 1.75
B-device VBUS SRP rise time maximum for OTG-A communication tRISE_SRP_UP_MAX 0 to 2.1 V with < 13 μF load 34 ms
B-device VBUS SRP rise time minimum for standard host connection tRISE_SRP_UP_MIN 0.8 to 2.0 V with > 97 μF load 46 ms

4.22.10 OTG ID

PARAMETER COMMENTS MIN TYP MAX UNIT
VBUS Wakeup Comparator
ID wake-up comparator RID_WK_UP Wakeup when ID shorted to ground. 30 100
ID Comparators — ID External Resistors Specifications
ID ground comparator RID_GND ID_GND interrupt 4 20 25
ID Float comparator RID_FLOAT ID_FLOAT interrupt 200 500
ID Line
Phone ID pullup to VPH_ID_UP RPH_ID_UP ID unloaded (VRUSB) 70 90 286
Phone ID pullup voltage VPH_ID_UP Connected to VRUSB 2.5 3.2 V
ID line maximum voltage 5.25 V

4.22.11 USB Charger Detection

USB Charger Detection Debounce Time
REQUIREMENT PARAMETER NB CLOCK TEST CONDITIONS MIN TYP MAX UNIT
Minimum 10 ms DEBVBUS_TIME 448 ACTIVE/SLEEP mode 13.7 13.7 ms
Minimum 20 ms DEBUSBCHG_TIME 896 ACTIVE/SLEEP mode 27.3 27.3 ms

Table 4-4 Voltages

PARAMETER SYMBOL CONDITIONS MIN MAX UNIT REF
Logic Threshold VLGC 0.8 2.0 V 1.4.4
D+ Source Voltage VDP_SRC Output current > 250 µA 0.5 0.675 V
Data Detect Voltage VDAT_REF 0.25 0.4 V
Data Line Leakage Voltage VDAT_LKG 0 3.6 V 3.9

Table 4-5 Currents

PARAMETER SYMBOL CONDITIONS MIN MAX UNIT REF
Portable Device Current from Charging Host Port during chirp IDEV_HCHG_CHRP 710 mA 3.6.2
Data Contact Detect Current Source IDP_SRC 7 13 µA
D- Sink Current IDM_SINK 50 150 µA

Table 4-6 Resistances

PARAMETER SYMBOL CONDITIONS MIN MAX UNIT
D+ pulldown resistance RDP_DWN 14.25 24.8
D- pulldown resistance RDM_DWN 14.25 24.8

Table 4-7 USB Charger Detection (Wait and Debounce Timing)

USB Charger Detection (Wait and Debounce Timing)
Requirement PARAMETER NB CLOCK TEST CONDITIONS MIN TYP MAX UNIT
Minimum 200 us D+ Current source on-time
TIDP_SRC_ON
8 ACTIVE/SLEEP mode(1) 244.1 244.1 µs
Minimum 40 ms D+ Voltage source on-time
TVDP_SRC_ON
1792 ACTIVE/SLEEP mode(1) 54.7 54.7 ms
Minimum 40 ms D+ Voltage source off to high current
TVDP_SRC_HICRNT
1792 ACTIVE/SLEEP mode(1) 54.7 54.7 ms
Minimum 2 s DATA_CONTACT_DETECT Timeout
TDCD_TIMEOUT
89600 ACTIVE/SLEEP mode(1) 2.73 2.73 s
(1) Note: LS Device mode not supported

4.23 MADC

PARAMETER CONDITIONS MIN TYP MAX UNIT
Resolution 10 Bit
Input dynamic range for external input ADCIN0 0 1.5 V
MADC voltage reference 1.5 V
Differential nonlinearity –1 1 LSB
Integral nonlinearity Best fitting –2 2 LSB
Offset Best fitting –28.5 28.5 mV
Input bias 1 μA
Input capacitor CBANK 10 pF
Input current leakage 1 μA

4.23.1 MADC Analog Input Range and Prescaler Ratio

MADC CHANNEL INT/EXT ANALOG INPUT RANGE (V) PRESCALER
MIN MAX OUTPUT RANGE (V) DIVIDER RATIO NOTE
MIN MAX
ADCIN0: General-purpose input (1) External 0.0 1.5 N/A N/A 1 No prescaler
ADCIN1:7 Reserved Internal N/A N/A N/A N/A N/A Not used
ADCIN8: VBUS Voltage (VBUS) Internal 0.0 6.5 0.0 1.5 3/14 Prescaler in USB subchip.
Rdivider = (6 × 2.76 kΩ)/(28 × 2.76 kΩ) (typ)(3)
ADCIN9: Reserved Internal Not used
ADCIN10:11 Reserved Internal N/A N/A N/A N/A N/A
ADCIN12: Main battery voltage (VBAT) Internal 2.7 4.7 0.675 1.175 0.25 Prescaler integrated
Rdivider = 9.85 kΩ/(4 × 9.85 kΩ) (typ)(2)
ADCIN13:15 Reserved Internal N/A N/A N/A N/A N/A
(1) General-purpose input has to be tied to ground when TPS65921 internal power supply (VINTANA1) is off.
(2) Tolerance for resistors-type (PL_HR): ±12%
(3) Tolerance for resistors-type (PL_VHSR): ±19%

The table below summarizes the sequence conversion timing characteristics. Figure 4-5 shows one conversion sequence general timing diagram.

Table 4-8 Sequence Conversion Timing Characteristics

PARAMETER COMMENTS MIN TYP MAX UNIT
F Running frequency 1 MHz
T = 1/F Clock period 1 μs
N Number of analog inputs to convert in a single sequence 0 16
Tstart SW1, SW2, or USB asynchronous request or real-time STARTADC request 3 4 μs
Tsettling time Settling time to wait before sampling a stable analog input (capacitor bank charge time) 5 12 260 μs
Tsettling is calculated from the max((Rs + Ron)*Cbank) of all possible input sources (internal or external). Ron is the resistance of the selection analog input switches (5 kΩ). This time is software programmable by OCP register; default value is 12 µs.
Tstartsar The successive approximation registers ADC start time 1 μs
Tadc time The successive approximation registers ADC conversion time 10 μs
Tcapture time Tcapture time is the conversion result capture time. 2 μs
Tstop 1 2 μs
Full Conversion Sequence Time Only one channel (N = 1) (1) 22 39 μs
All channels(2) 352 624
Conversion Sequence Time Without Tstart and Tstop: Only one channel (N = 1) (1) 18 33 μs
Without Tstart and Tstop: All channels(1) 288 528
STARTADC pulse duration STARTADC period is T 0.33 μs
(1) General-purpose input ADCIN0 must be tied to ground when TPS65921 internal power supplies (VINTANA1) is off.
(2) Total Sequence Conversion Time General Formula: Tstart + N × (1 + Tsettling + Tadc + Tcapture) + Tstop.

This table is illustrated in Figure 4-5. The Busy parameter indicates that a conversion sequence is running, and the channel N result register parameter corresponds to the result register of RT/GP selected channel.

SWCS048-005.gifFigure 4-5 One Conversion Sequence General Timing Diagram

4.23.2 MADC Power Consumption

PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
Power on consumption Running frequency f = 1 MHz 1(1) mA
Power down consumption 1 μA
(1) The consumption is given in stand-alone mode.

4.24 TPS65921 Interface Target Frequencies

Table below assumes testing over the recommended operating conditions.

I/O INTERFACE INTERFACE DESIGNATION TARGET FREQUENCY
1.5 V
SmartReflex I2C Slave high-speed mode 3.6 Mbps
General-purpose I2C I2C Interface Slave fast-speed mode 400 kbps
Slave standard mode 100 kbps
High speed 480 Mbps
USB USB Full speed 12 Mbps
Low speed 1.5 Mbps
Real/View® ICE tool 30 MHz
JTAG XDS560 and XDS510 tools 30 MHz
Lauterbach™ tool 30 MHz

4.24.1 I2C Timing

The TPS65921 provides two I2C HS slave interfaces (one for general-purpose and one for SmartReflex). These interfaces support the standard mode (100 kbps), fast mode (400 kbps), and HS mode (3.5 Mbps). The general-purpose I2C module embeds four different slave hard-coded addresses (ID1 = 48h, ID2 = 49h, ID3 = 4Ah, and ID4 = 4Bh). The SmartReflex I2C module uses one slave hard-coded address (ID5). The master mode is not supported.

Table 4-9 and Table 4-10 assume testing over the recommended operating conditions.

SWCS048-006.gifFigure 4-6 I2C Interface—Transmit and Receive in Slave Mode

Table 4-9 I2C Interface Timing Requirements(1)(2)

NO. PARAMETER MIN MAX UNIT
Slave High-Speed Mode
I3 tsu(SDA-SCLH) Setup time, SDA valid to SCL high 10 ns
I4 th(SCLL-SDA) Hold time, SDA valid from SCL low 0 70 ns
I7 tsu(SCLH-SDAL) Setup time, SCL high to SDA low 160 ns
I8 th(SDAL-SCLL) Hold time, SCL low from SDA low 160 ns
I9 tsu(SDAH-SCLH) Setup time, SDA high to SCL high 160 ns
Slave Fast-Speed Mode
I3 tsu(SDA-SCLH) Setup time, SDA valid to SCL high 100 ns
I4 th(SCLL-SDA) Hold time, SDA valid from SCL low 0 0.9 µs
I7 tsu(SCLH-SDAL) Setup time, SCL high to SDA low 0.6 µs
I8 th(SDAL-SCLL) Hold time, SCL low from SDA low 0.6 µs
I9 tsu(SDAH-SCLH) Setup time, SDA high to SCL high 0.6 µs
Slave Standard Mode
I3 tsu(SDA-SCLH) Setup time, SDA valid to SCL high 250 ns
I4 th(SCLL-SDA) Hold time, SDA valid from SCL low 0 ns
I7 tsu(SCLH-SDAL) Setup time, SCL high to SDA low 4.7 µs
I8 th(SDAL-SCLL) Hold time, SCL low from SDA low 4 µs
I9 tsu(SDAH-SCLH) Setup time, SDA high to SCL high 4 µs
(1) The input timing requirements are given by considering a rising or falling time of:
80 ns in high-speed mode (3.4 Mbits/s)
300 ns in fast-speed mode (400 Kbits/s)
1000 ns in standard mode (100 Kbits/s)
(2) SDA is equal to I2C.SR.SDA or I2C.CNTL.SDA
SCL is equal to I2C.SR.SCL or I2C.CNTL.SCL

Table 4-10 I2C Interface Switching Requirements(1)(2)

NO. PARAMETER MIN MAX UNIT
Slave High-speed Mode
I1 tw(SCLL) Pulse duration, SCL low 160 ns
I2 tw(SCLH) Pulse duration, SCL high 60 ns
Slave Fast-speed Mode
I1 tw(SCLL) Pulse duration, SCL low 1.3 µs
I2 tw(SCLH) Pulse duration, SCL high 0.6 µs
Slave Standard Mode
I1 tw(SCLL) Pulse duration, SCL low 4.7 µs
I2 tw(SCLH) Pulse duration, SCL high 4 µs
(1) The capacitive load is equivalent to:
100 pF in high-speed mode (3.4 Mbits/s)
400 pF in fast-speed mode (400 Kbits/s)
400 pF in standard mode (100 Kbits/s)
(2) SDA is equal to I2C.SR.SDA or I2C.CNTL.SDA
SCL is equal to I2C.SR.SCL or I2C.CNTL.SCL

4.25 JTAG Interfaces

Table 4-11 and Table 4-12 assume testing over the recommended operating conditions.

SWCS048-007.gifFigure 4-7 JTAG Interface Timing

The input timing requirements are given by considering a rising or falling edge of 7 ns.

4.25.1 JTAG Interface Timing Requirements

Table 4-11 JTAG Interface Timing Requirements

NO. PARAMETER MIN MAX UNIT
Clock
JL1 tc(TCK) Cycle time, JTAG.TCK period 30 ns
JL2 tw(TCK) Pulse duration, JTAG.TCK high or low (1) 0.48 × P 0.52 × P ns
Read Timing
JL3 tsu(TDIV-TCKH) Setup time, JTAG.TDI valid before JTAG.TCK high 8 ns
JL4 th(TDIV-TCKH) Hold time, JTAG.TDI valid after JTAG.TCK high 5 ns
JL5 tsu(TMSV-TCKH) Setup time, JTAG.TMS valid before JTAG.TCK high 8 ns
JL6 th(TMSV-TCKH) Hold time, JTAG.TMS valid after JTAG.TCK high 5 ns
(1) P = JTAG.TCK clock period

The capacitive load is equivalent to 35 pF.

4.25.2 JTAG Interface Switching Characteristics

Table 4-12 JTAG Interface Switching Characteristics

NO. PARAMETER MIN MAX UNIT
Write Timing
JL7 td(TCK-TDOV)) Delay time, JTAG, TCK active edge to JTAG.TDO valid 0 14 ns
NO. PARAMETER MIN MAX UNIT
Clock
JL1 tc(TCK) Cycle time, JTAG.TCK period 30 ns
JL2 tw(TCK) Pulse duration, JTAG.TCK high or low(1) 0.48 × P 0.52 × P ns
Read Timing
JL3 tsu(TDIV-TCKH) Setup time, JTAG.TDI valid before JTAG.TCK high 8 ns
JL4 th(TDIV-TCKH) Hold time, JTAG.TDI valid after JTAG.TCK high 5 ns
JL5 tsu(TMSV-TCKH) Setup time, JTAG.TMS valid before JTAG.TCK high 8 ns
JL6 th(TMSV-TCKH) Hold time, JTAG.TMS valid after JTAG.TCK high 5 ns
(1) P = JTAG.TCK clock period

4.25.3 Debouncing Time

Debounce times are listed in Table 4-13.

Table 4-13 Debouncing Time

DEBOUNCING FUNCTIONS BLOCK PROGRAMMABLE DEBOUNCING TIME DEFAULT
Main battery charged threshold (<3.2 V) Battery monitoring No 580 μs 580 μs
Main battery low threshold detection (<2.7 V) No 60 μs 60 μs
Main battery plug detection No 60 μs 60 μs
Debouncing functions interrupt generation debounce POWER No 125.6 μs 125.6 μs
Plug/unplug detection VBUS (1) USB Yes 0 to 250 ms
(32/32768-second stgif)
30 ms
Plug/unplug detection ID(2) USB Yes 0 to 250 ms
(32/32768-second stgif)
50 ms
Debouncing functions interrupt generation debounce for VBUS and ID(3) POWER Yes 0 to 233 ms 28 ms
Hot-die detection Thermistor No 60 μs 60 μs
Thermal shutdown detection No 60 μs 60 μs
PWRON(4) Start/stop button No 31.25 ms 31.25 ms
NRESWARM Button reset No 60 μs 60 μs
MMC1/2 (plug/unplug) GPIO Yes 0 or 28 ms ± 2 ms 0 ms
(1) Programmable in the VBUS_DEBOUNCE register.
(2) Programmable in the ID_DEBOUNCE register.
(3) Programmable in the RESERVED_E[2:0] CFG_VBUSDEB register
(4) The PWRON signal is debounced 1024 × CLK32K (maximum 1026 × CLK32K) falling edge in master mode.