JAJSIA2B December   2019  – February 2022 TPS6594-Q1

PRODUCTION DATA  

  1. 特長
  2. アプリケーション
  3. 概要
    1.     4
  4. Revision History
  5. 概要 (続き)
  6. Pin Configuration and Functions
    1. 6.1 Digital Signal Descriptions
  7. Specifications
    1. 7.1  Absolute Maximum Ratings
    2. 7.2  ESD Ratings
    3. 7.3  Recommended Operating Conditions
    4. 7.4  Thermal Information
    5. 7.5  General Purpose Low Drop-Out Regulators (LDO1, LDO2, LDO3)
    6. 7.6  Low Noise Low Drop-Out Regulator (LDO4)
    7. 7.7  Internal Low Drop-Out Regulators (LDOVRTC, LDOVINT)
    8. 7.8  BUCK1, BUCK2, BUCK3, BUCK4 and BUCK5 Regulators
    9. 7.9  Reference Generator (BandGap)
    10. 7.10 Monitoring Functions
    11. 7.11 Clocks, Oscillators, and PLL
    12. 7.12 Thermal Monitoring and Shutdown
    13. 7.13 System Control Thresholds
    14. 7.14 Current Consumption
    15. 7.15 Backup Battery Charger
    16. 7.16 Digital Input Signal Parameters
    17. 7.17 Digital Output Signal Parameters
    18. 7.18 I/O Pullup and Pulldown Resistance
    19. 7.19 I2C Interface
    20. 7.20 Serial Peripheral Interface (SPI)
    21. 7.21 Typical Characteristics
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1  System Supply Voltage Monitor and Over-Voltage Protection
      2. 8.3.2  Power Resources (Bucks and LDOs)
        1. 8.3.2.1 Buck Regulators
          1. 8.3.2.1.1  BUCK Regulator Overview
          2. 8.3.2.1.2  Multi-Phase Operation and Phase-Adding or Shedding
          3. 8.3.2.1.3  Transition Between PWM and PFM Modes
          4. 8.3.2.1.4  Multi-Phase BUCK Regulator Configurations
          5. 8.3.2.1.5  Spread-Spectrum Mode
          6. 8.3.2.1.6  Adaptive Voltage Scaling (AVS) and Dynamic Voltage Scaling (DVS) Support
          7. 8.3.2.1.7  BUCK Output Voltage Setting
          8. 8.3.2.1.8  BUCK Regulator Current Limit
          9. 8.3.2.1.9  SW_Bx Short-to-Ground Detection
          10. 8.3.2.1.10 Sync Clock Functionality
          11.        48
        2. 8.3.2.2 Low Dropout Regulators (LDOs)
          1. 8.3.2.2.1 LDOVINT
          2. 8.3.2.2.2 LDOVRTC
          3. 8.3.2.2.3 LDO1, LDO2, and LDO3
          4. 8.3.2.2.4 Low-Noise LDO (LDO4)
      3. 8.3.3  Residual Voltage Checking
      4. 8.3.4  Output Voltage Monitor and PGOOD Generation
      5. 8.3.5  Thermal Monitoring
        1. 8.3.5.1 Thermal Warning Function
        2. 8.3.5.2 Thermal Shutdown
      6. 8.3.6  Backup Supply Power-Path
      7. 8.3.7  General-Purpose I/Os (GPIO Pins)
      8. 8.3.8  nINT, EN_DRV, and nRSTOUT Pins
      9. 8.3.9  Interrupts
      10. 8.3.10 RTC
        1. 8.3.10.1 General Description
        2. 8.3.10.2 Time Calendar Registers
          1. 8.3.10.2.1 TC Registers Read Access
          2. 8.3.10.2.2 TC Registers Write Access
        3. 8.3.10.3 RTC Alarm
        4. 8.3.10.4 RTC Interrupts
        5. 8.3.10.5 RTC 32-kHz Oscillator Drift Compensation
      11. 8.3.11 Watchdog (WDOG)
        1. 8.3.11.1 Watchdog Fail Counter and Status
        2. 8.3.11.2 Watchdog Start-Up and Configuration
        3. 8.3.11.3 MCU to Watchdog Synchronization
        4. 8.3.11.4 Watchdog Disable Function
        5. 8.3.11.5 Watchdog Sequence
        6. 8.3.11.6 Watchdog Trigger Mode
        7. 8.3.11.7 WatchDog Flow Chart and Timing Diagrams in Trigger Mode
        8.       79
        9. 8.3.11.8 Watchdog Question-Answer Mode
          1. 8.3.11.8.1 Watchdog Q&A Related Definitions
          2. 8.3.11.8.2 Question Generation
          3. 8.3.11.8.3 Answer Comparison
            1. 8.3.11.8.3.1 Sequence of the 2-bit Watchdog Answer Counter
            2. 8.3.11.8.3.2 Watchdog Sequence Events and Status Updates
            3. 8.3.11.8.3.3 Watchdog Q&A Sequence Scenarios
      12. 8.3.12 Error Signal Monitor (ESM)
        1. 8.3.12.1 ESM Error-Handling Procedure
          1. 8.3.12.1.1 Level Mode
          2.        90
          3. 8.3.12.1.2 PWM Mode
            1. 8.3.12.1.2.1 Good-Events and Bad-Events
            2. 8.3.12.1.2.2 ESM Error-Counter
            3. 8.3.12.1.2.3 ESM Start-Up in PWM Mode
            4. 8.3.12.1.2.4 ESM Flow Chart and Timing Diagrams in PWM Mode
            5.         96
    4. 8.4 Device Functional Modes
      1. 8.4.1 Device State Machine
        1. 8.4.1.1 Fixed Device Power FSM
          1. 8.4.1.1.1 Register Resets and NVM Read at INIT State
        2. 8.4.1.2 Pre-Configurable Mission States
          1. 8.4.1.2.1 PFSM Commands
            1. 8.4.1.2.1.1  REG_WRITE_IMM Command
            2. 8.4.1.2.1.2  REG_WRITE_MASK_IMM Command
            3. 8.4.1.2.1.3  REG_WRITE_MASK_PAGE0_IMM Command
            4. 8.4.1.2.1.4  REG_WRITE_BIT_PAGE0_IMM Command
            5. 8.4.1.2.1.5  REG_WRITE_WIN_PAGE0_IMM Command
            6. 8.4.1.2.1.6  REG_WRITE_VOUT_IMM Command
            7. 8.4.1.2.1.7  REG_WRITE_VCTRL_IMM Command
            8. 8.4.1.2.1.8  REG_WRITE_MASK_SREG Command
            9. 8.4.1.2.1.9  SREG_READ_REG Command
            10. 8.4.1.2.1.10 SREG_WRITE_IMM Command
            11. 8.4.1.2.1.11 WAIT Command
            12. 8.4.1.2.1.12 DELAY_IMM Command
            13. 8.4.1.2.1.13 DELAY_SREG Command
            14. 8.4.1.2.1.14 TRIG_SET Command
            15. 8.4.1.2.1.15 TRIG_MASK Command
            16. 8.4.1.2.1.16 END Command
          2. 8.4.1.2.2 Configuration Memory Organization and Sequence Execution
          3. 8.4.1.2.3 Mission State Configuration
          4. 8.4.1.2.4 Pre-Configured Hardware Transitions
            1. 8.4.1.2.4.1 ON Requests
            2. 8.4.1.2.4.2 OFF Requests
            3. 8.4.1.2.4.3 NSLEEP1 and NSLEEP2 Functions
            4. 8.4.1.2.4.4 WKUP1 and WKUP2 Functions
            5. 8.4.1.2.4.5 LP_WKUP Pins for Waking Up from LP STANDBY
        3. 8.4.1.3 Error Handling Operations
          1. 8.4.1.3.1 Power Rail Output Error
          2. 8.4.1.3.2 Boot BIST Error
          3. 8.4.1.3.3 Runtime BIST Error
          4. 8.4.1.3.4 Catastrophic Error
          5. 8.4.1.3.5 Watchdog (WDOG) Error
          6. 8.4.1.3.6 Error Signal Monitor (ESM) Error
          7. 8.4.1.3.7 Warnings
        4. 8.4.1.4 Device Start-up Timing
        5. 8.4.1.5 Power Sequences
        6. 8.4.1.6 First Supply Detection
        7. 8.4.1.7 Register Power Domains and Reset Levels
      2. 8.4.2 Multi-PMIC Synchronization
        1. 8.4.2.1 SPMI Interface System Setup
        2. 8.4.2.2 Transmission Protocol and CRC
          1. 8.4.2.2.1 Operation with Transmission Errors
          2. 8.4.2.2.2 Transmitted Information
        3. 8.4.2.3 SPMI Target Device Communication to SPMI Controller Device
          1. 8.4.2.3.1 Incomplete Communication from SPMI Target Device to SPMI Controller Device
        4. 8.4.2.4 SPMI-BIST Overview
          1. 8.4.2.4.1 SPMI Bus during Boot BIST and RUNTIME BIST
          2. 8.4.2.4.2 Periodic Checking of the SPMI
          3. 8.4.2.4.3 SPMI Message Priorities
    5. 8.5 Control Interfaces
      1. 8.5.1 CRC Calculation for I2C and SPI Interface Protocols
      2. 8.5.2 I2C-Compatible Interface
        1. 8.5.2.1 Data Validity
        2. 8.5.2.2 Start and Stop Conditions
        3. 8.5.2.3 Transferring Data
        4. 8.5.2.4 Auto-Increment Feature
      3. 8.5.3 Serial Peripheral Interface (SPI)
    6. 8.6 Configurable Registers
      1. 8.6.1 Register Page Partitioning
      2. 8.6.2 CRC Protection for Configuration, Control, and Test Registers
      3. 8.6.3 CRC Protection for User Registers
      4. 8.6.4 Register Write Protection
        1. 8.6.4.1 ESM and WDOG Configuration Registers
        2. 8.6.4.2 User Registers
    7. 8.7 Register Maps
      1. 8.7.1 TPS6594-Q1 Registers
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Powering a Processor
        1. 9.2.1.1 Design Requirements
        2. 9.2.1.2 Detailed Design Procedure
          1. 9.2.1.2.1 VCCA, VSYS_SENSE, and OVPGDRV
          2. 9.2.1.2.2 Internal LDOs
          3. 9.2.1.2.3 Crystal Oscillator
          4. 9.2.1.2.4 Buck Input Capacitors
          5. 9.2.1.2.5 Buck Output Capacitors
          6. 9.2.1.2.6 Buck Inductors
          7. 9.2.1.2.7 LDO Input Capacitors
          8. 9.2.1.2.8 LDO Output Capacitors
          9. 9.2.1.2.9 Digital Signal Connections
      2. 9.2.2 Application Curves
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Device Support
      1. 12.1.1 Third-Party Products Disclaimer
    2. 12.2 Device Nomenclature
    3. 12.3 Documentation Support
    4. 12.4 Receiving Notification of Documentation Updates
    5. 12.5 サポート・リソース
    6. 12.6 Trademarks
    7. 12.7 Electrostatic Discharge Caution
    8. 12.8 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ
発注情報
Good-Events and Bad-Events

In PWM mode, each ESM monitors the high-pulse and low-pulse duration times its PWM inputs signal as follows:

  • After a falling edge, the ESM starts monitoring the low-pulse time-duration. If the input signal remains low after exceeding the maximum low-pulse time-threshold (tLOW_MAX_TH), the ESM detects a bad event and the low-pulse duration counter reinitializes. Each time the signal further exceeds the maximum threshold, the ESM detects a bad event. On the next rising edge on the input signal, the ESM starts the high-pulse time-duration monitoring
  • After a rising edge, the ESM starts monitoring the high-pulse time-duration. If the input signal remains high after exceeding the maximum high-pulse time-threshold (tHIGH_MAX_TH), the ESM detects a bad event and the high-pulse duration counter reinitializes. Each time the signal further exceeds the maximum threshold, the ESM detects a bad event. On the next falling edge on the input signal, the ESM starts the low-pulse time-duration monitoring.

In addition, each ESM detects a bad-event in PWM mode if one of the events that follow occurs on the deglitched signal of the related input pin nERR_MCU or nERR_SoC:

  • A high-pulse time-duration which is longer than the maximum high-pulse time-threshold (tHIGH_MAX_TH) that is configured in corresponding register bits ESM_MCU_HMAX[7:0] or ESM_SOC_HMAX[7:0].
  • A high-pulse time-duration which is shorter than the minimum high-pulse time-threshold (tHIGH_MIN_TH) that is configured in corresponding register bits ESM_MCU_HMIN[7:0] or ESM_SOC_HMIN[7:0].
  • A low-pulse time-duration which is longer than the maximum low-pulse time-threshold (tLOW_MAX_TH) that is configured in corresponding register bits ESM_MCU_LMAX[7:0] or ESM_SOC_LMAX[7:0].
  • A low-pulse time-duration which is less than the minimum low-pulse time-threshold (tLOW_MIN_TH) that is configured in register corresponding register bits ESM_MCU_LMIN[7:0] or ESM_SOC_LMIN[7:0].

Each ESM detects a good-event in PWM mode if one of the events that follow occurs on the deglitched signal of the related input pin nERR_MCU or nERR_SoC:

  • A low-pulse time-duration within the minimum and maximum low-pulse time-thresholds is followed by a high-pulse time-duration within the minimum and maximum high-pulse time-thresholds, or
  • A high-pulse duration within the minimum and maximum high-pulse time-thresholds is followed by a low-pulse duration within the minimum and maximum low-pulse time-thresholds

Register bits ESM_MCU_HMAX[7:0] and ESM_SOC_HMAX[7:0] set the maximum high-pulse time-threshold (tHIGH_MAX_TH) for the related ESM. Use Equation 14 and Equation 15 to calculate the worst-case values for the tHIGH_MAX_TH:

Equation 14. Min. tHIGH_MAX_TH = (15 µs +ESM_x_HMAX[7:0] × 15 µs) × 0.95
Equation 15. Max. tHIGH_MAX_TH = (15 µs +ESM_x_HMAX[7:0] × 15 µs) × 1.05

, in which x stands for either MCU or SoC.

ESM_MCU_HMIN[7:0] and ESM_SOC_HMIN[7:0] set the minimum high-pulse time-threshold (tHIGH_MIN_TH) for the related ESM. Use Equation 16 and Equation 17 to calculate the worst-case values for the tHIGH_MIN_TH:

Equation 16. Min. tHIGH_MIN_TH = (15 µs +ESM_x_HMIN[7:0] × 15 µs) × 0.95
Equation 17. Max. tHIGH_MIN_TH = (15 µs +ESM_x_HMIN[7:0] × 15 µs) × 1.05

, in which x stands for either MCU or SoC.

ESM_MCU_LMAX[7:0] and ESM_SOC_LMAX[7:0] set the maximum low-pulse time-threshold (tLOW_MAX_TH) for the related ESM. Use Equation 18 and Equation 19 to calculate the worst-case values for the tLOW_MAX_TH:

Equation 18. Min. tLOW_MAX_TH = (15 µs +ESM_x_LMAX[7:0] × 15 µs) × 0.95
Equation 19. Max. tLOW_MAX_TH = (15 µs +ESM_x_LMAX[7:0] × 15 µs) × 1.05

, in which x stands for either MCUor SoC.

ESM_MCU_LMIN[7:0] and ESM_SOC_LMIN[7:0] set the minimum low-pulse time-threshold (tLOW_MIN_TH) for the related ESM. Use Equation 20 and Equation 21 to calculate the worst-case values for the tLOW_MIN_TH:

Equation 20. Min. tLOW_MIN_TH = (15 µs +ESM_x_LMIN[7:0] × 15 µs) × 0.95
Equation 21. Max. tLOW_MIN_TH = (15 µs +ESM_x_LMIN[7:0] × 15 µs) × 1.05

, in which x stands for either MCU or SoC.

Please note that when setting up the minimum and the maximum low/high-pulse time-thresholds need to be configured such that clock tolerances from the TPS6594-Q1 and from the processor are incorporated. Equation 22, Equation 23, Equation 24, and Equation 25 are a guideline on how to incorporate these clock-tolerances:

Equation 22. ESM_x_HMIN[7:0] < 0.5 × (ESM_x_HMAX[7:0] + ESM_x_HMIN[7:0]) × 0.95 × (1 - MCU/SoC clock tolerance)
Equation 23. ESM_x_HMAX[7:0] > 0.5 × (ESM_x_HMAX[7:0] + ESM_x_HMIN[7:0]) × 1.05 × (1 + MCU/SoC clock tolerance)
Equation 24. ESM_x_LMIN[7:0] < 0.5 × (ESM_x_LMAX[7:0] + ESM_x_LMIN[7:0]) × 0.95 × (1 - MCU/SoC clock tolerance)
Equation 25. ESM_x_LMAX[7:0] > 0.5 × (ESM_x_LMAX[7:0] + ESM_x_LMIN[7:0]) × 1.05 × (1 + MCU/SoC clock tolerance)

, in which x stands for either MCU or SoC.