JAJSQ10E march   2012  – may 2023 TPS7A16-Q1

PRODUCTION DATA  

  1.   1
  2. 特長
  3. アプリケーション
  4. 説明
  5. Revision History
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Typical Characteristics
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Enable (EN)
      2. 7.3.2 Regulated Output (VOUT)
      3. 7.3.3 PG Delay Timer (DELAY)
    4. 7.4 Device Functional Modes
      1. 7.4.1 Power-Good
      2. 7.4.2 Power-Good Delay and Delay Capacitor
  9. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Applications
      1. 8.2.1 TPS7A1601-Q1 Circuit as an Adjustable Regulator
        1. 8.2.1.1 Design Requirements
        2. 8.2.1.2 Detailed Design Procedure
          1. 8.2.1.2.1 Adjustable Voltage Operation
          2. 8.2.1.2.2 Resistor Selection
          3. 8.2.1.2.3 Capacitor Recommendations
          4. 8.2.1.2.4 Input and Output Capacitor Requirements
          5. 8.2.1.2.5 Feed-Forward Capacitor (Only for Adjustable Version)
          6. 8.2.1.2.6 Transient Response
        3. 8.2.1.3 Application Curves
      2. 8.2.2 Automotive Applications
        1. 8.2.2.1 Design Requirements
        2. 8.2.2.2 Detailed Design Procedure
          1. 8.2.2.2.1 Device Recommendations
        3. 8.2.2.3 Application Curves
      3. 8.2.3 Multicell Battery Packs
        1. 8.2.3.1 Design Requirements
        2. 8.2.3.2 Detailed Design Procedure
        3. 8.2.3.3 Application Curves
      4. 8.2.4 Battery-Operated Power Tools
        1. 8.2.4.1 Design Requirements
        2. 8.2.4.2 Detailed Design Procedure
        3. 8.2.4.3 Application Curves
    3. 8.3 Power Supply Recommendations
    4. 8.4 Layout
      1. 8.4.1 Layout Guidelines
        1. 8.4.1.1 Additional Layout Considerations
        2. 8.4.1.2 Power Dissipation
        3. 8.4.1.3 Thermal Considerations
      2. 8.4.2 Layout Examples
  10. Device and Documentation Support
    1. 9.1 ドキュメントの更新通知を受け取る方法
    2. 9.2 サポート・リソース
    3. 9.3 Trademarks
    4. 9.4 静電気放電に関する注意事項
    5. 9.5 用語集
  11. 10Mechanical, Packaging, and Orderable Information

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ
発注情報

Multicell Battery Packs

Currently, battery packs can employ up to a dozen cells in series that, when fully charged, can have voltages of up to 55 V. Internal circuitry in these battery packs is used to prevent overcurrent and overvoltage conditions that can degrade battery life or even pose a safety risk; this internal circuitry is often managed by a low-power microcontroller, such as TI’s MSP430™. See the overview for microcontrollers (MCU) for more information.

The microcontroller continuously monitors the battery, whether the battery is in use or not. Although this microcontroller can be powered by an intermediate voltage taken from the multicell array, this approach unbalances the battery pack, degrading the battery life or adding cost to implement more complex cell-balancing topologies.

The best approach to power this microcontroller is to regulate down the voltage from the entire array to discharge every cell equally and prevent any balancing issues. This approach reduces system complexity and cost.

The TPS7A16-Q1 can be used for this application because this device can handle very high voltages (from the entire multicell array) and has very low quiescent current (to maximize battery life).

GUID-F1EF5A00-4E6D-4959-A4B0-764CB99A34E3-low.gifFigure 8-6 Protection Based on Low-Power Microcontroller Power From Multicell Battery Packs