JAJSKJ1A December   2020  – February 2021 TPS929121-Q1

PRODUCTION DATA  

  1. 特長
  2. アプリケーション
  3. 概要
  4. Revision History
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Timing Requirements
    7. 7.7 Typical Characteristics
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Device Bias and Power
        1. 8.3.1.1 Power Supply (SUPPLY)
        2. 8.3.1.2 5-V Low-Drop-Out Linear Regulator (VLDO)
        3. 8.3.1.3 Undervoltage Lockout (UVLO) and Power-On-Reset (POR)
        4. 8.3.1.4 Programmable Low Supply Warning
      2. 8.3.2 Constant Current Output
        1. 8.3.2.1 Reference Current With External Resistor (REF)
        2. 8.3.2.2 64-Step Programmable High-Side Constant-Current Output
      3. 8.3.3 PWM Dimming
        1. 8.3.3.1 PWM Dimming Frequency
        2. 8.3.3.2 PWM Generator
        3. 8.3.3.3 Linear Brightness Control
        4. 8.3.3.4 Exponential Brightness Control
        5. 8.3.3.5 External Clock Input for PWM Generator (CLK)
        6. 8.3.3.6 External PWM Input ( PWM0 and PWM1)
      4. 8.3.4 On-chip 8-bit Analog-to-Digital Converter (ADC)
      5. 8.3.5 Diagnostic and Protection in Normal State
        1. 8.3.5.1  Fault Masking
        2. 8.3.5.2  Supply Undervoltage Lockout Diagnostics in Normal State
        3. 8.3.5.3  Low-Supply Warning Diagnostics in Normal State
        4. 8.3.5.4  Reference Diagnostics in Normal State
        5. 8.3.5.5  Pre-Thermal Warning and Overtemperature Protection in Normal State
        6. 8.3.5.6  Communication Loss Diagnostic in Normal State
        7. 8.3.5.7  LED Open-Circuit Diagnostics in Normal State
        8. 8.3.5.8  LED Short-Circuit Diagnostics in Normal State
        9. 8.3.5.9  On-Demand Off-State Invisible Diagnostics
        10. 8.3.5.10 On-Demand Off-State Single-LED Short-Circuit (SS) Diagnostics
        11. 8.3.5.11 Automatic Single-LED Short-Circuit (AutoSS) Detection in Normal State
        12. 8.3.5.12 EEPROM CRC Error in Normal State
        13.       48
      6. 8.3.6 Diagnostic and Protection in Fail-Safe States
        1. 8.3.6.1 Fault Masking
        2. 8.3.6.2 Supply UVLO Diagnostics in Fail-Safe States
        3. 8.3.6.3 Low-supply Warning Diagnostics in Fail-Safe states
        4. 8.3.6.4 Reference Diagnostics at Fail-Safe States
        5. 8.3.6.5 Overtemperature Protection in Fail-Safe State
        6. 8.3.6.6 LED Open-circuit Diagnostics in Fail-Safe State
        7. 8.3.6.7 LED Short-circuit Diagnostics in Fail-Safe State
        8. 8.3.6.8 EEPROM CRC Error in Fail-safe State
        9.       58
    4. 8.4 Device Functional Modes
      1. 8.4.1 POR State
      2. 8.4.2 Initialization State
      3. 8.4.3 Normal State
      4. 8.4.4 Fail-Safe States
      5. 8.4.5 Program State
      6. 8.4.6 Programmable Output Failure State
      7. 8.4.7 ERR Output
      8. 8.4.8 Register Default Data
    5. 8.5 Programming
      1. 8.5.1 FlexWire Protocol
        1. 8.5.1.1 Protocol Overview
        2. 8.5.1.2 UART Interface Address Setting
        3. 8.5.1.3 Status Response
        4. 8.5.1.4 Synchronization Byte
        5. 8.5.1.5 Device Address Byte
        6. 8.5.1.6 Register Address Byte
        7. 8.5.1.7 Data Frame
        8.       77
        9. 8.5.1.8 CRC Frame
        10. 8.5.1.9 Burst Mode
      2. 8.5.2 Registers Lock
      3. 8.5.3 All Registers CRC Check
      4. 8.5.4 EEPROM Programming
        1. 8.5.4.1 Chip Selection by Pulling REF Pin High
        2. 8.5.4.2 Chip Selection by ADDR Pins configuration
        3. 8.5.4.3 EEPROM Register Access and Burn
        4. 8.5.4.4 EEPROM Program State Exit
        5. 8.5.4.5 Reading Back EEPROM
    6. 8.6 Register Maps
      1. 8.6.1 FullMap Registers
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Smart Rear Lamp With Distributed LED drivers
      2. 9.2.2 Design Requirements
      3. 9.2.3 Detailed Design Procedure
      4. 9.2.4 Application Curves
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 ドキュメントの更新通知を受け取る方法
    2. 12.2 サポート・リソース
    3. 12.3 Trademarks
    4. 12.4 静電気放電に関する注意事項
    5. 12.5 用語集
  13. 13Mechanical, Packaging, and Orderable Information

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ
発注情報

Fail-Safe States

When the TPS929121-Q1 is entering fail-safe states from normal state, all the registers are set to default value or reloaded from EEPROM. The TPS929121-Q1 provides two sets of channel enable configuration in fail-safe states, programmable by EEP_FS0CHx and EEP_FS1CHx. In fail-safe state 0, the channel-enable register CONF_ENCHx automatically loads code from EEP_FS0CHx; in fail-safe state 1, the channel-enable register CONF_ENCHx automatically loads code from EEP_FS1CHx. The fail-safe state is selective by FS pin voltage. The fail-safe state 1 is selected by pulling the FS pin to high, otherwise the fail-safe state 0 is selected. The flag register FLAG_EXTFS shows the FS input level at real-time. If FS pin input voltage is logic high, the FLAG_EXTFS is set to 1.The device does not reset diagnostics status or FLAG registers when switching between two fail-safe states.

Setting CONF_FORCEFS to 1 forces the device into fail-safe state from normal state. The TPS929121-Q1 can quit from fail-safe state to normal state by setting CLR_FS to 1 with FLAG registers cleared. The CONF_CLRLOCK register is automatically set to 1 when the TPS929121-Q1 goes into the fail-safe state to prevent the modification of configuration register by mistake. To get out of fail-safe states to normal state, CONF_CLRLOCK register must be cleared to 0 before setting CLR_FS to 1.

The fail-safe states also allows the TPS929121-Q1 operating as standalone device without master controlling in the system. The ERR pin is used as fault indicator to achieve one-fails-all-fail or one-fails-others-on diagnostics requirement. When low quiescent current in fault mode is required, all channels must be set as one-fails-all-fail. In this case, if fault is triggered, the device goes into low current fault mode and disables FlexWire interface to save quiescent current.