SLES275A January   2015  – December 2017 VSP5324-Q1

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  ESD Ratings
    3. 6.3  Recommended Operating Conditions
    4. 6.4  Thermal Information
    5. 6.5  Electrical Characteristics: Dynamic Performance
    6. 6.6  Electrical Characteristics: General
    7. 6.7  Electrical Characteristics: Digital
    8. 6.8  Timing Requirements
    9. 6.9  LVDS Timing at Different Sampling Frequencies (One-Lane Interface, 12x Serialization)
    10. 6.10 LVDS Timing at Different Sampling Frequencies (Two-Lane Interface, 6x Serialization)
    11. 6.11 Serial Interface Timing Requirements
    12. 6.12 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagrams
    3. 7.3 Feature Description
      1. 7.3.1 Analog Input
        1. 7.3.1.1 Large- and Small-Signal Input Bandwidth
      2. 7.3.2 Digital Processing Block
        1. 7.3.2.1 Digital Gain
        2. 7.3.2.2 ADC Input Polarity Inversion
        3. 7.3.2.3 SYNC Function
        4. 7.3.2.4 Output Data Format
      3. 7.3.3 Serial LVDS Interface
        1. 7.3.3.1 One-Lane, 12x Serialization with DDR Bit Clock and 1x Frame Clock
        2. 7.3.3.2 Two-Lane, 6x Serialization with DDR Bit Clock and 0.5x Frame Clock
      4. 7.3.4 Bit Clock Programmability
      5. 7.3.5 LVDS Output Data and Clock Buffers
    4. 7.4 Device Functional Modes
      1. 7.4.1 External Reference Mode Of Operation
        1. 7.4.1.1 Using the REF Pins
        2. 7.4.1.2 Using the VCM Pin
    5. 7.5 Programming
      1. 7.5.1 Serial Interface
      2. 7.5.2 Register Initialization
      3. 7.5.3 Serial Register Readout
    6. 7.6 Register Maps
      1. 7.6.1 Serial Registers
        1. 7.6.1.1  Register 00h (offset = 00h) [reset = 0]
        2. 7.6.1.2  Register 01h (offset = 01h) [reset = 0]
        3. 7.6.1.3  Register 02h (offset = 02h) [reset = 0]
        4. 7.6.1.4  Register 0Ah (offset = 0Ah) [reset = 0]
        5. 7.6.1.5  Register 0Fh (offset = 0Fh) [reset = 0]
        6. 7.6.1.6  Register 14h (offset = 14h) [reset = 0]
        7. 7.6.1.7  Register 1Ch (offset = 1Ch) [reset = 0]
        8. 7.6.1.8  Register 23h (offset = 23h) [reset = 0]
        9. 7.6.1.9  Register 24h (offset = 24h) [reset = 0]
        10. 7.6.1.10 Register 25h (offset = 25h) [reset = 0]
        11. 7.6.1.11 Register 26h (offset = 26h) [reset = 0]
        12. 7.6.1.12 Register 27h (offset = 27h) [reset = 0]
        13. 7.6.1.13 Register 28h (offset = 28h) [reset = 0]
        14. 7.6.1.14 Register 29h (offset = 29h) [reset = 0]
        15. 7.6.1.15 Register 2Ah (offset = 2Ah) [reset = 0]
        16. 7.6.1.16 Register 2Bh (offset = 2Bh) [reset = 0]
        17. 7.6.1.17 Register 2Eh (offset = 2Eh) [reset = 0]
        18. 7.6.1.18 Register 30h (offset = 30h) [reset = 0]
        19. 7.6.1.19 Register 33h (offset = 33h) [reset = 0]
        20. 7.6.1.20 Register 35h (offset = 35h) [reset = 0]
        21. 7.6.1.21 Register 38h (offset = 38h) [reset = 0x0000]
        22. 7.6.1.22 Register 42h (offset = 42h) [reset = 0]
        23. 7.6.1.23 Register 45h (offset = 45h) [reset = 0]
        24. 7.6.1.24 Register 46h (offset = 46h) [reset = 0]
        25. 7.6.1.25 Register 50h (offset = 50h) [reset = 0]
        26. 7.6.1.26 Register 51h (offset = 51h) [reset = 0]
        27. 7.6.1.27 Register 53h (offset = 53h) [reset = 0]
        28. 7.6.1.28 Register 54h (offset = ) [reset = 0]
        29. 7.6.1.29 Register 55h (offset = 55h) [reset = 0]
        30. 7.6.1.30 Register F0h (offset = F0h) [reset = 0]
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1 Drive Circuit Requirements
        2. 8.2.2.2 Clock Input
      3. 8.2.3 Application Curves
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
      1. 10.1.1 General Guidelines
      2. 10.1.2 Grounding
      3. 10.1.3 Supply Decoupling
      4. 10.1.4 Exposed Pad
    2. 10.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Device Support
      1. 11.1.1 Device Nomenclature
    2. 11.2 Documentation Support
      1. 11.2.1 Related Documentation
    3. 11.3 Receiving Notification of Documentation Updates
    4. 11.4 Community Resources
    5. 11.5 Trademarks
    6. 11.6 Electrostatic Discharge Caution
    7. 11.7 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ
発注情報

Specifications

Absolute Maximum Ratings

Over operating free-air temperature range, unless otherwise noted.(1)
MIN MAX UNIT
Supply voltage AVDD –0.3 2.2 V
LVDD –0.3 2.2 V
Ground voltage differences Between AGND and LGND –0.3 0.3 V
Input voltage Digital outputs –0.3 lesser of 2.2 or (LVDD + 0.3) V
Digital inputs (CLKN, CLKP(2), RESET, SCLK, SDATA, CS, SYNC, PD, INT/EXT) –0.3 lesser of 2.2 or (LVDD + 0.3) V
Analog inputs –0.3 lesser of 2.2 or (LVDD + 0.3) V
Input current (all pins except supplies) –10 10 mA
Ambient temperature, under bias, TA –40 105 °C
Junction temperature, TJ 125 °C
Storage temperature, Tstg –55 125 °C
Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
When AVDD is turned off, TI recommends switching off the input clock (or ensuring the voltage on CLKP, CLKN is less than |0.3 V|). This setting prevents the ESD protection diodes at the clock input pins from turning on.

ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human body model (HBM), per AEC Q100-002(1) ±2000 V
Charged device model (CDM), per AEC Q100-011 Other pins ±500
Corner pins (1, 16, 17, 32, 33, 48, 49, and 64) ±750
AEC Q100-002 indicates HBM stressing is done in accordance with the ANSI/ESDA/JEDEC JS-001 specification.

Recommended Operating Conditions

Over operating free-air temperature range, unless otherwise noted.
MIN NOM MAX UNIT
V(AVDD) Analog supply voltage 1.7 1.8 1.9 V
V(LVDD) Digital supply voltage 1.7 1.8 1.9 V
VID Differential input voltage 2 VPP
VIC Input common-mode voltage VIC ± 50 mV
Input clock sample rate Two-lane LVDS interface 10 80 MSPS
One-lane LVDS interface 10 50 MSPS
(VCLKP – VCLKM) Input clock amplitude differential Sine wave, ac-coupled 1.5 VPP
LVPECL, ac-coupled 1.6 VPP
LVDS, ac-coupled 0.7 VPP
LVCMOS, single-ended, ac-coupled 3.3 V
Duty cycle 35% 50% 65%
CLOAD Maximum external capacitance from each output pin to DRGND 5 pF
RLOAD Differential resistance between LVDS output pairs (LVDS mode) 100 Ω
TA Operating free-air –40 105 °C

Thermal Information

THERMAL METRIC(1) VSP5324-Q1 UNIT
RGC (VQFN)
64 PINS
RθJA Junction-to-ambient thermal resistance 20.6 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 6.1 °C/W
RθJB Junction-to-board thermal resistance 2.7 °C/W
ψJT Junction-to-top characterization parameter 0.2 °C/W
ψJB Junction-to-board characterization parameter 2.6 °C/W
RθJC(bot) Junction-to-case (bottom) thermal resistance 0.4 °C/W
For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

Electrical Characteristics: Dynamic Performance

Typical values are at 25°C, V(AVDD) = 1.8 V, V(LVDD) = 1.8 V, sampling frequency = 80 MSPS, 50% clock duty cycle, and –1-dBFS differential analog input, unless otherwise noted. Minimum and maximum values are across the full temperature range of TMIN = –40°C to TMAX = 105°C, V(AVDD) = 1.8 V, V(LVDD) = 1.8 V.
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
Resolution 12 Bits
SNR Signal-to-noise ratio ƒIN = 5 MHz 68 70 dBFS
ƒIN = 30 MHz 69.5 dBFS
SINAD Signal-to-noise and distortion ratio ƒIN = 5 MHz 69.8 dBFS
ƒIN = 30 MHz 69.2 dBFS
SFDR Spurious-free dynamic range ƒIN = 5 MHz 64 85 dBc
ƒIN = 30 MHz 82 dBc
THD Total harmonic distortion ƒIN = 5 MHz 63 81.5 dBc
ƒIN = 30 MHz 78 dBc
HD2 Second-harmonic distortion ƒIN = 5 MHz 64 90 dBc
ƒIN = 30 MHz 86 dBc
HD3 Third-harmonic distortion ƒIN = 5 MHz 64 85 dBc
ƒIN = 30 MHz 82 dBc
Worst spur
(other than second and third harmonics)
ƒIN = 5 MHz 91 dBc
ƒIN = 30 MHz 83 dBc
IMD Two-tone intermodulation distortion ƒ1 = 8 MHz, ƒ2 = 10 MHz,
each tone at –7 dBFS
83 dBc
Crosstalk (far channel) 10-MHz full-scale signal on aggressor channel; no input signal applied on victim channel 95 dB
Input overload recovery Recovery to within 1% (of full-scale) for 6-dB overload with sine-wave input 1 Clock cycle
PSRR AC power-supply rejection ratio For 50-mVPP signal on AVDD supply,
up to 10 MHz, no signal applied to analog inputs
50 dB
ENOB Effective number of bits ƒIN = 5 MHz 11.3 Bits
DNL Differential nonlinearity ƒIN = 5 MHz –0.8 ±0.2 0.8 LSBs
INL Integral nonlinearity ƒIN = 5 MHz ±0.3 1 LSBs

Electrical Characteristics: General

Typical values are at 25°C, V(AVDD) = 1.8 V, V(LVDD) = 1.8 V, sampling frequency = 80 MSPS, 50% clock duty cycle, and –1-dBFS differential analog input, unless otherwise noted. Minimum and maximum values are across the full temperature range of TMIN = –40°C to TMAX = 105°C, V(AVDD) = 1.8 V, V(LVDD) = 1.8 V.
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
ANALOG INx_PUT
VID Differential input Voltage range 2 VPP
Resistance, at dc 2
Capacitance, at dc 2.2 pF
Analog input bandwidth 550 MHz
Analog input common-mode current (per input pin) 1.6 µA/
MSPS
VOC Common-mode output voltage 0.95 V
IO(VCM) VCM output current capability 5 mA
DC ACCURACY
Offset error ±5 ±20 mV
EGREF Gain error resulting from internal reference inaccuracy alone –2 2 %FS
EGCHAN Gain error of channel alone 0.5 %FS
POWER SUPPLY
IAVDD Analog supply current 80 MSPS 114 135 mA
50 MSPS 86 mA
ILVDD Output buffer supply current Two-lane LVDS interface, 80 MSPS, 350-mV swing with 100-Ω external termination 69 85 mA
One-lane LVDS interface, 50 MSPS, 350-mV swing with 100-Ω external termination 56 mA
Analog power 80 MSPS 205 mW
50 MSPS 155 mW
Digital power LVDS interface Two-lane LVDS interface, 80 MSPS, 350-mV swing with 100-Ω external termination 124 mW
One-lane LVDS interface, 50 MSPS, 350-mV swing with 100-Ω external termination 101 mW
Total power 80 MSPS, two-lane LVDS interface 329 mW
50 MSPS, one-lane LVDS interface 256 mW
Global power-down 40 mW
Standby power 135 mW

Electrical Characteristics: Digital

At V(AVDD) = 1.8 V, V(LVDD) = 1.8 V, unless otherwise noted. The DC specifications refer to the condition where the digital outputs do not switch, but are tied permanently to a valid logic level 0 or 1.
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
DIGITAL INx_PUTS (RESET, SCLK, SDATA, CS, PDN, SYNC, INT/EXT)
VIH High-level input voltage All digital inputs support 1.8-V and 3.3-V CMOS logic levels > 1.3 V
VIL Low-level input voltage All digital inputs support 1.8-V and 3.3-V CMOS logic levels < 0.4 V
IIH High-level input current VIH = 1.8 V 6 µA
IIL Low-level input current VIL = 0 V < 0.1 µA
DIGITAL OUTPUTS
VOH High-level output voltage CMOS interface (SDOUT) AVDD – 0.1 V
VOL Low-level output voltage CMOS interface (SDOUT) 0.1 V
VOD(H) High-level output differential voltage LVDS interface (OUTP, OUTM, LCLKP, LCLKM, ADCLKP, ADCLKM), with an external 100-Ω termination 245 420 mV
VOD(L) Low-level output differential voltage LVDS interface (OUTP, OUTM, LCLKP, LCLKM, ADCLKP, ADCLKM), with an external 100-Ω termination –420 –245 mV
VOC Output common-mode voltage 1.05 V

Timing Requirements(1)

Typical values are at 25°C, V(AVDD) = 1.8 V, V(LVDD) = 1.8 V, sampling frequency = 80 MSPS, sine wave input clock, C(LOAD) = 5 pF, and R(LOAD) = 100 Ω, unless otherwise noted. Minimum and maximum values are across the full temperature range of TMIN = –40°C to TMAX = 105°C, V(AVDD) = 1.8 V, and V(LVDD) = 1.7 V to 1.9 V.
MIN NOM MAX UNIT
Aperture delay 4 ns
Aperture delay matching(2)(3) Between the two channels of the same device ±175 ps
Aperture delay variation Between two devices at the same temperature and LVDD supply 2.5 ns
Aperture jitter (RMS) 320 fs
Wakeup time Time to valid data after coming out of partial
power-down mode
5 50 µs
Time to valid data after coming out of global
power-down mode
100 500 µs
ADC latency One-lane LVDS output interface 11 Clock cycles
Two-lane LVDS output interface 15 Clock cycles
tsu Data setup time Data valid to zero crossing of LCLKP, 80 MSPS,
two-lane LVDS
0.61 ns
th Data hold time(4) Zero crossing of LCLKP to data becoming invalid,
80 MSPS, two-lane LVDS
0.74 ns
tp Clock propagation delay Input clock rising edge crossover to frame clock rising edge crossover, two-lane LVDS for
10 ≤ ƒS ≤ 80 MSPS
(11 / 12) ×
tS + td
ns
Input clock rising edge crossover to frame clock rising edge crossover, one-lane LVDS for
10 ≤ ƒS ≤ 65 MSPS
(9 / 12) ×
tS + td
ns
td Delay time 6.8 9 11.8 ns
LVDS bit clock duty cycle Differential clock duty cycle (LCLKP – LCLKM) 50 %
tf Data fall time Rise time measured from –100 mV to 100 mV,
10 MSPS ≤ sampling frequency ≤ 80 MSPS
0.2 ns
tr Data rise time Rise time measured from –100 mV to 100 mV,
10 MSPS ≤ sampling frequency ≤ 80 MSPS
0.2 ns
tr(CLK) Output clock rise time Rise time measured from –100 mV to 100 mV,
10 MSPS ≤ sampling frequency ≤ 80 MSPS
0.18 ns
tf(CLK) Output clock fall time Rise time measured from –100 mV to 100 mV,
10 MSPS ≤ sampling frequency ≤ 80 MSPS
0.18 ns
Timing parameters are ensured by design and characterization and are not tested in production.
C(LOAD) is the effective external single-ended load capacitance between each output pin and ground.
R(LOAD) is the differential load resistance between the LVDS output pair.
Data valid refers to a logic high of 100 mV and a logic low of –100 mV.

LVDS Timing at Different Sampling Frequencies (One-Lane Interface, 12x Serialization)

See Figure 1 and Figure 2.
MIN MAX UNIT
th LCLKP zero-crossing to data becoming invalid (both edges) ƒ(SAMPLE) = 40 MSPS 0.75 ns
ƒ(SAMPLE) = 50 MSPS 0.47
ƒ(SAMPLE) = 65 MSPS 0.25
tsu Data valid to LCLKP zero-crossing (both edges) ƒ(SAMPLE) = 40 MSPS 0.62 ns
ƒ(SAMPLE) = 50 MSPS 0.38
ƒ(SAMPLE) = 65 MSPS 0.19

LVDS Timing at Different Sampling Frequencies (Two-Lane Interface, 6x Serialization)

See Figure 1 and Figure 2.
MIN MAX UNIT
th LCLKP zero-crossing to data becoming invalid (both edges) ƒ(SAMPLE) = 40 MSPS 1.9 ns
ƒ(SAMPLE) = 50 MSPS 1.55
ƒ(SAMPLE) = 65 MSPS 1.1
tsu Data valid to LCLKP zero-crossing (both edges) ƒ(SAMPLE) = 40 MSPS 1.44 ns
ƒ(SAMPLE) = 50 MSPS 1.02
ƒ(SAMPLE) = 65 MSPS 0.64

Serial Interface Timing Requirements

See Figure 3.
MIN MAX UNIT
ƒ(SCLK) SCLK frequency = 1 / tSCLK > DC MHz
tsu(LOADS) SEN to SCLK setup time 33 ns
tsu(LOADH) SCLK to SEN hold time 33 ns
tsu(D) SDATA setup time 33 ns
th(D) SDATA hold time 33 ns
VSP5324-Q1 tim_lvds_vout_sles275.gif

NOINDENT:

With an external 100-Ω termination..
Figure 1. LVDS Output Voltage Levels
VSP5324-Q1 tim_lvds_mode_sles275.gif Figure 2. LVDS Mode Timing
VSP5324-Q1 ai_tim_serial_iface_sles275.gif Figure 3. Serial Interface Timing

Typical Characteristics

Typical values are at 25°C, V(AVDD) = 1.8 V, V(LVDD) = 1.8 V, 80-MSPS sampling clock frequency, 50% clock duty cycle, and –1-dBFS differential analog input, unless otherwise noted.
VSP5324-Q1 D001_sles275.gif
SNR = 69.6 dBFS SINAD = 69.5 dBFS
SFDR = 89.3 dBc THD = 85.9 dBc
Sample Rate = 80 MSPS
Figure 4. FFT for 5-MHz Input Signal
VSP5324-Q1 D003_sles275.gif
SNR = 68.5 dBFS SINAD = 67.8 dBFS
SFDR = 76.5 dBc THD = 75 dBc
Sample Rate = 80 MSPS
Figure 6. FFT for 65-MHz Input Signal
VSP5324-Q1 D002_sles275.gif
SNR = 69.6 dBFS SINAD = 69.4 dBFS
SFDR = 84.8 dBc THD = 83.2 dBc
Sample Rate = 80 MSPS
Figure 5. FFT for 15-MHz Input Signal
VSP5324-Q1 D004_sles275.gif
SNR = 69.8 dBFS SINAD = 69.7 dBFS
SFDR = 85.1 dBc THD = 84.7 dBc
Sample Rate = 40 MSPS
Figure 7. FFT For 5-MHz Input Signal
VSP5324-Q1 D005_sles275.gif
SNR = 69.6 dBFS SINAD = 69.5 dBFS
SFDR = 86.8 dBc THD = 84 dBc
Sample Rate = 40 MSPS
Figure 8. FFT for 15-MHz Input Signal
VSP5324-Q1 D007_sles275.gif
Figure 10. Signal-to-Noise Ratio (SNR) vs Input Signal Frequency
VSP5324-Q1 D009_sles275.gif
Figure 12. SNR vs Digital Gain
VSP5324-Q1 D011_sles275.gif
ƒIN = 5 MHz
Figure 14. Performance vs Input Signal Amplitude
VSP5324-Q1 D013_sles275.gif
ƒIN = 5 MHz
Figure 16. Performance vs Input Clock Duty Cycle
VSP5324-Q1 D015_sles275.gif
ƒIN = 5 MHz External reference using the VCM pin
Figure 18. Performance in External Reference Mode
VSP5324-Q1 D017_sles275.gif
ƒIN = 5 MHz
Figure 20. SFDR vs AVDD and Temperature
VSP5324-Q1 D019_sles275.gif
ƒIN = 5 MHz
Figure 22. SFDR vs DVDD and Temperature
VSP5324-Q1 D021_sles275.gif
A 0.7-VPP 5-MHz sine-wave input is applied on the INx_P pin
The INx_M pin is connected to the device VCM pin
Figure 24. SFDR vs Temperature for Single-ended Input
VSP5324-Q1 D023_sles275.gif
Figure 26. Differential Nonlinearity
VSP5324-Q1 D025_sles275.gif Figure 28. Filter Response (Decimate-by-2)
VSP5324-Q1 D027_sles275.gif
Figure 30. Digital High-Pass Filter Response
VSP5324-Q1 D029_sles275.gif
Figure 32. FFT With HPF Enabled and Disabled
(No Input Signal)
VSP5324-Q1 D031_sles275.gif Figure 34. FFT (0 MHz to 1 MHz) for 5-MHz Input Signal
(Sample Rate = 80 MSPS With Low-Frequency Noise Suppression Enabled)
VSP5324-Q1 D033_sles275.gif Figure 36. Analog Supply Current
VSP5324-Q1 D035_sles275.gif Figure 38. Digital Supply Current
VSP5324-Q1 D006_sles275.gif
SNR = 67.2 dBFS SINAD = 66.6 dBFS
SFDR = 76.5 dBc THD = 74 dBc
Sample Rate = 40 MSPS
Figure 9. FFT for 65-MHz Input Signal
VSP5324-Q1 D008_sles275.gif
Figure 11. Spurious-Free-Dynamic Range (SFDR) vs Input Signal Frequency
VSP5324-Q1 D010_sles275.gif
Figure 13. SFDR vs Digital Gain
VSP5324-Q1 D012_sles275.gif
ƒIN = 5 MHz
Figure 15. Performance vs Input Clock Amplitude
VSP5324-Q1 D014_sles275.gif
ƒIN = 5 MHz
Figure 17. Performance vs Input Common-Mode
VSP5324-Q1 D016_sles275.gif
ƒIN = 5 MHz
Figure 19. SNR vs AVDD and Temperature
VSP5324-Q1 D018_sles275.gif
ƒIN = 5 MHz
Figure 21. SNR vs DVDD and Temperature
VSP5324-Q1 D020_sles275.gif
A 0.7-VPP 5-MHz sine-wave input is applied on the INx_P pin
The INx_M pin is connected to the device VCM pin
Figure 23. SNR vs Temperature For Single-Ended Input
VSP5324-Q1 D022_sles275.gif
Figure 25. Integral Nonlinearity
VSP5324-Q1 D024_sles275.gif
ƒIN = 3 MHz 50-mVPP signal superimposed on the input common-mode
Figure 27. CMRR vs Frequency
VSP5324-Q1 D026_sles275.gif Figure 29. Filter Response (Decimate-by-4)
VSP5324-Q1 D028_sles275.gif
SNR = 70.8 dBFS SINAD = 70.7 dBFS SFDR = 88.7 dBc
THD = 87.3 dBc Decimate-by-2 filter enabled
Figure 31. FFT for 5-MHz Input Signal
(Sample Rate = 80 MSPS With Decimation Filter = 2)
VSP5324-Q1 D030_sles275.gif
SNR = 70.8 dBFS SINAD = 70.7 dBFS
SFDR = 88.7 dBc THD = 87.3 dBc
Figure 33. FFT (Full-Band) for 5-MHz Input Signal
(Sample Rate = 80 MSPS With Low-Frequency Noise Suppression Enabled)
VSP5324-Q1 D032_sles275.gif Figure 35. FFT (39 MHz to 40 MHz) for 5-MHz Input Signal
(Sample Rate = 80 MSPS With Low-Frequency Noise Suppression Enabled)
VSP5324-Q1 D034_sles275.gif Figure 37. Power Consumption on Analog Supply
VSP5324-Q1 D036_sles275.gif Figure 39. Power Consumption on Digital Supply