JAJSCC3B June   2016  – July 2018 CC1350

PRODUCTION DATA.  

  1. 1デバイスの概要
    1. 1.1 特長
    2. 1.2 アプリケーション
    3. 1.3 概要
    4. 1.4 機能ブロック図
  2. 2改訂履歴
  3. 3Device Comparison
    1. 3.1 Related Products
  4. 4Terminal Configuration and Functions
    1. 4.1 Pin Diagram – RSM Package
    2. 4.2 Signal Descriptions – RSM Package
    3. 4.3 Pin Diagram – RHB Package
    4. 4.4 Signal Descriptions – RHB Package
    5. 4.5 Pin Diagram – RGZ Package
    6. 4.6 Signal Descriptions – RGZ Package
  5. 5Specifications
    1. 5.1  Absolute Maximum Ratings
    2. 5.2  ESD Ratings
    3. 5.3  Recommended Operating Conditions
    4. 5.4  Power Consumption Summary
    5. 5.5  RF Characteristics
    6. 5.6  Receive (RX) Parameters, 861 MHz to 1054 MHz
    7. 5.7  Receive (RX) Parameters, 431 MHz to 527 MHz
    8. 5.8  Transmit (TX) Parameters, 861 MHz to 1054 MHz
    9. 5.9  Transmit (TX) Parameters, 431 MHz to 527 MHz
    10. 5.10 1-Mbps GFSK (Bluetooth low energy) – RX
    11. 5.11 1-Mbps GFSK (Bluetooth low energy) – TX
    12. 5.12 PLL Parameters
    13. 5.13 ADC Characteristics
    14. 5.14 Temperature Sensor
    15. 5.15 Battery Monitor
    16. 5.16 Continuous Time Comparator
    17. 5.17 Low-Power Clocked Comparator
    18. 5.18 Programmable Current Source
    19. 5.19 DC Characteristics
    20. 5.20 Thermal Characteristics
    21. 5.21 Timing and Switching Characteristics
      1. 5.21.1 Reset Timing
        1. Table 5-1 Reset Timing
      2. 5.21.2 Wakeup Timing
        1. Table 5-2 Wakeup Timing
      3. 5.21.3 Clock Specifications
        1. Table 5-3 24-MHz Crystal Oscillator (XOSC_HF)
        2. Table 5-4 32.768-kHz Crystal Oscillator (XOSC_LF)
        3. Table 5-5 48-MHz RC Oscillator (RCOSC_HF)
        4. Table 5-6 32-kHz RC Oscillator (RCOSC_LF)
      4. 5.21.4 Flash Memory Characteristics
        1. Table 5-7 Flash Memory Characteristics
      5. 5.21.5 Synchronous Serial Interface (SSI) Characteristics
        1. Table 5-8 Synchronous Serial Interface (SSI) Characteristics
    22. 5.22 Typical Characteristics
    23. 5.23 Typical Characteristics – Sub-1 GHz
    24. 5.24 Typical Characteristics – 2.4 GHz
  6. 6Detailed Description
    1. 6.1  Overview
    2. 6.2  Main CPU
    3. 6.3  RF Core
    4. 6.4  Sensor Controller
    5. 6.5  Memory
    6. 6.6  Debug
    7. 6.7  Power Management
    8. 6.8  Clock Systems
    9. 6.9  General Peripherals and Modules
    10. 6.10 Voltage Supply Domains
    11. 6.11 System Architecture
  7. 7Application, Implementation, and Layout
    1. 7.1 Application Information
    2. 7.2 TI Design or Reference Design
  8. 8デバイスおよびドキュメントのサポート
    1. 8.1  デバイスの項目表記
    2. 8.2  ツールとソフトウェア
    3. 8.3  ドキュメントのサポート
    4. 8.4  テキサス・インスツルメンツのローパワーRF Webサイト
    5. 8.5  追加情報
    6. 8.6  コミュニティ・リソース
    7. 8.7  商標
    8. 8.8  静電気放電に関する注意事項
    9. 8.9  Export Control Notice
    10. 8.10 Glossary
  9. 9メカニカル、パッケージ、および注文情報
    1. 9.1 パッケージ情報

Sensor Controller

The Sensor Controller contains circuitry that can be selectively enabled in standby mode. The peripherals in this domain may be controlled by the Sensor Controller Engine, which is a proprietary power-optimized CPU. This CPU can read and monitor sensors or perform other tasks autonomously; thereby significantly reducing power consumption and offloading the main CM3 CPU.

A PC-based development tool called Sensor Controller Studio is used to write, test, and debug code for the Sensor Controller. The tool produces C driver source code, which the System CPU application uses to control and exchange data with the Sensor Controller. Typical use cases may be (but are not limited to) the following:

  • Analog sensors using integrated ADC
  • Digital sensors using GPIOs with bit-banged I2C or SPI
  • Capacitive sensing
  • Waveform generation
  • Pulse counting
  • Key scan
  • Quadrature decoder for polling rotational sensors

The peripherals in the Sensor Controller include the following:

  • The low-power clocked comparator can be used to wake the device from any state in which the comparator is active. A configurable internal reference can be used with the comparator. The output of the comparator can also be used to trigger an interrupt or the ADC.
  • Capacitive sensing functionality is implemented through the use of a constant current source, a time-to-digital converter, and a comparator. The continuous time comparator in this block can also be used as a higher-accuracy alternative to the low-power clocked comparator. The Sensor Controller takes care of baseline tracking, hysteresis, filtering, and other related functions.
  • The ADC is a 12-bit, 200-ksamples/s ADC with 8 inputs and a built-in voltage reference. The ADC can be triggered by many different sources, including timers, I/O pins, software, the analog comparator, and the RTC.
  • The analog modules can be connected to up to eight different GPIOs (see Table 6-1).

The peripherals in the Sensor Controller can also be controlled from the main application processor.

Table 6-1 GPIOs Connected to the Sensor Controller(1)

ANALOG CAPABLE CC13x0
7 × 7 RGZ
DIO NUMBER
5 × 5 RHB
DIO NUMBER
4 × 4 RSM
DIO NUMBER
Y 30 14
Y 29 13
Y 28 12
Y 27 11 9
Y 26 9 8
Y 25 10 7
Y 24 8 6
Y 23 7 5
N 7 4 2
N 6 3 1
N 5 2 0
N 4 1
N 3 0
N 2
N 1
N 0
Depending on the package size, up to 15 pins can be connected to the Sensor Controller. Up to eight of these pins can be connected to analog modules.