TPD8S300はシングル・チップのUSB Type-Cポート保護ソリューションで、20VのVBUSへの短絡過電圧およびIEC ESD保護を行います。
USB Type-Cコネクタのリリース以降、USB Type-C用でありながら、USB Type-Cの仕様を満たしていない多くの製品やアクセサリがリリースされました。このような例の1つは、USB Type-C電力供給アダプタで、VBUSライン上にしか20Vを印加しないものです。USB Type-Cに関する別の懸念として、小さなコネクタのピンが互いに近接して配置されているため、コネクタの機械的なねじれや水平方向のずれによってピン間が短絡することがあります。これによって、20V VBUSがCCおよびSBUピンと短絡する恐れがあります。また、Type-Cコネクタのピンが互いに近接して配置されていることから、破片や湿気により20V VBUSピンがCCおよびSBUピンと短絡する危険も高まっています。
これらの理想的でない機器や機械的事象が存在するため、CCおよびSBUピンは5V以下の電圧でのみ動作するにもかかわらず、20V許容にする必要があります。TPD8S300はCCおよびSBUピンの過電圧保護を行うため、通常の動作に影響することなくCCおよびSBUピンを20V許容にできます。このデバイスは、SBUおよびCCラインと直列に高電圧FETを配置します。OVPスレッショルドを超える電圧がこれらのラインに検出された場合、高電圧スイッチが開き、システムの他の部分を、コネクタに存在している高電圧の状況から絶縁します。
最後に、ほとんどのシステムでは外部ピンについてIEC 61000-4-2システム・レベルのESD保護が必要です。TPD8S300にはCC1、CC2、SBU1、SBU2、DP_T (上側のD+)、DM_T (上側のD–)、DP_B (下側のD+)、DM_B (下側のD–)ピンのIEC 61000-4-2 ESD保護が内蔵されているため、コネクタの外部に高電圧TVSダイオードを配置する必要はありません。
型番 | パッケージ | 本体サイズ(公称) |
---|---|---|
TPD8S300 | WQFN (20) | 3.00mm×3.00mm |
Part Number | Over Voltage Protected Channels | IEC 61000-4-2 ESD Protected Channels |
---|---|---|
TPD6S300 | 4-Ch (CC1, CC2, SBU1, SBU2) | 6-Ch (CC1, CC2, SBU1, SBU2, DP, DM) |
TPD8S300 | 4-Ch (CC1, CC2, SBU1, SBU2) | 8-Ch (CC1, CC2, SBU1, SBU2, DP_T, DM_T, DP_B, DM_B) |
PIN | TYPE | DESCRIPTION | |
---|---|---|---|
NO. | NAME | ||
1 | C_SBU1 | I/O | Connector side of the SBU1 OVP FET. Connect to either SBU pin of the USB Type-C connector |
2 | C_SBU2 | I/O | Connector side of the SBU2 OVP FET. Connect to either SBU pin of the USB Type-C connector |
3 | VBIAS | Power | Pin for ESD support capacitor. Place a 0.1-µF capacitor on this pin to ground |
4 | C_CC1 | I/O | Connector side of the CC1 OVP FET. Connect to either CC pin of the USB Type-C connector |
5 | C_CC2 | I/O | Connector side of the CC2 OVP FET. Connect to either CC pin of the USB Type-C connector |
6 | RPD_G2 | I/O | Short to C_CC2 if dead battery resistors are needed. If dead battery resistors are not needed, short pin to GND |
7 | RPD_G1 | I/O | Short to C_CC1 if dead battery resistors are needed. If dead battery resistors are not needed, short pin to GND |
8 | GND | GND | Ground |
9 | FLT | O | Open drain for fault reporting |
10 | VPWR | Power | 2.7-V-3.6-V power supply |
11 | CC2 | I/O | System side of the CC2 OVP FET. Connect to either CC pin of the CC/PD controller |
12 | CC1 | I/O | System side of the CC1 OVP FET. Connect to either CC pin of the CC/PD controller |
13 | GND | GND | Ground |
14 | SBU2 | I/O | System side of the SBU2 OVP FET. Connect to either SBU pin of the SBU MUX |
15 | SBU1 | I/O | System side of the SBU1 OVP FET. Connect to either SBU pin of the SBU MUX |
16 | D4 | I/O | USB2.0 IEC ESD protection. Connect to any of the USB2.0 pins of the USB Type-C connector |
17 | D3 | I/O | USB2.0 IEC ESD protection. Connect to any of the USB2.0 pins of the USB Type-C connector |
18 | GND | GND | Ground |
19 | D2 | I/O | USB2.0 IEC ESD protection. Connect to any of the USB2.0 pins of the USB Type-C connector |
20 | D1 | I/O | USB2.0 IEC ESD protection. Connect to any of the USB2.0 pins of the USB Type-C connector |
— | Thermal Pad | GND | Internally connected to GND. Used as a heatsink. Connect to the PCB GND plane |
MIN | MAX | UNIT | |||
---|---|---|---|---|---|
VI | Input voltage | VPWR | –0.3 | 4 | V |
RPD_G1, RPD_G2 | –0.3 | 24 | V | ||
VO | Output voltage | FLT | –0.3 | 6 | V |
VBIAS | –0.3 | 24 | V | ||
VIO | I/O voltage | D1, D2, D3, D4 | –0.3 | 6 | V |
CC1, CC2, SBU1, SBU2 | –0.3 | 6 | V | ||
C_CC1, C_CC2, C_SBU1, C_SBU2 | –0.3 | 24 | V | ||
TA | Operating free air temperature | –40 | 85 | °C | |
Tstg | Storage temperature | –65 | 150 | °C |
VALUE | UNIT | ||||
---|---|---|---|---|---|
V(ESD) | Electrostatic discharge | Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) | ±2000 | V | |
Charged-device model (CDM), per JEDEC specification JESD22-C101(2) | ±500 |
VALUE | UNIT | ||||
---|---|---|---|---|---|
V(ESD) | Electrostatic discharge(1) | IEC 61000-4-2, C_CC1, C_CC2, D1, D2, D3, D4 | Contact discharge | ±8000 | V |
Air-gap discharge | ±15000 | ||||
IEC 61000-4-2, C_SBU1, C_SBU2 | Contact discharge | ±6000 | |||
Air-gap discharge | ±15000 |
MIN | NOM | MAX | UNIT | |||
---|---|---|---|---|---|---|
VI | Input voltage | VPWR | 2.7 | 3.3 | 3.6 | V |
RPD_G1, RPD_G2 | 0 | 5.5 | V | |||
VO | Output voltage | FLT pull-up resistor power rail | 2.7 | 5.5 | V | |
VIO | I/O voltage | D1, D2, D3, D4 | –0.3 | 5.5 | V | |
CC1, CC2, C_CC1, C_CC2 | 0 | 5.5 | V | |||
SBU1, SBU2, C_SBU1, C_SBU2 | 0 | 4.3 | V | |||
IVCONN | VCONN current | Current flowing into CC1/2 and flowing out of C_CC1/2, VCCx – VC_CCx ≤ 250 mV | 600 | mA | ||
IVCONN | VCONN current | Current flowing into CC1/2 and flowing out of C_CC1/2, TJ ≤ 105°C | 1.25 | A | ||
External components(1) | FLT pull-up resistance | 1.7 | 300 | kΩ | ||
VBIAS capacitance(2) | 0.1 | µF | ||||
VPWR capacitance | 0.3 | 1 | µF |
THERMAL METRIC(1) | TPD8S300 | UNIT | |
---|---|---|---|
RUK (WQFN) | |||
20 PINS | |||
RθJA | Junction-to-ambient thermal resistance | 45.2 | °C/W |
RθJC(top) | Junction-to-case (top) thermal resistance | 48.8 | °C/W |
RθJB | Junction-to-board thermal resistance | 17.1 | °C/W |
ψJT | Junction-to-top characterization parameter | 0.6 | °C/W |
ψJB | Junction-to-board characterization parameter | 17.1 | °C/W |
RθJC(bot) | Junction-to-case (bottom) thermal resistance | 3.7 | °C/W |
PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |
---|---|---|---|---|---|---|
CC OVP Switches | ||||||
RON | On resistance of CC OVP FETs, TJ ≤ 85°C | CCx = 5.5 V | 278 | 392 | mΩ | |
On resistance of CC OVP FETs, TJ ≤ 105°C | CCx = 5.5 V | 278 | 415 | mΩ | ||
RONFLAT | On resistance flatness | Sweep CCx voltage between 0 V and 1.2 V | 5 | mΩ | ||
CON_CC | Equivalent on capacitance | Capacitance from C_CCx or CCx to GND when device is powered. VC_CCx/VCCx = 0 V to 1.2 V , f = 400 kHz | 60 | 74 | 120 | pF |
RD_DB | Dead battery pull-down resistance (only present when device is unpowered). Effective resistance of RD and FET in series | V_C_CCx = 2.6 V | 4.1 | 5.1 | 6.1 | kΩ |
VTH_DB | Threshold voltage of the pulldown FET in series with RD during dead battery | I_CC = 80 µA | 0.5 | 0.9 | 1.2 | V |
VOVPCC | OVP threshold on CC pins | Place 5.5 V on C_CCx. Step up C_CCx until the FLT pin is asserted | 5.75 | 6 | 6.2 | V |
VOVPCC_HYS | Hysteresis on CC OVP | Place 6.5 V on C_CCx. Step down the voltage on C_CCx until the FLT pin is deasserted. Measure difference between rising and falling OVP threshold for CC | 50 | mV | ||
BWON | On bandwidth single ended (–3 dB) | Measure the –3-dB bandwidth from C_CCx to CCx. Single ended measurement, 50-Ω system. Vcm = 0.1 V to 1.2 V | 100 | MHz | ||
VSTBUS_CC | Short-to-VBUS tolerance on the CC pins | Hot-Plug C_CCx with a 1 meter USB Type C Cable, place a 30-Ω load on CCx | 24 | V | ||
VSTBUS_CC_CLAMP | Short-to-VBUS system-side clamping voltage on the CC pins (CCx) | Hot-Plug C_CCx with a 1 meter USB Type C Cable. Hot-Plug voltage C_CCx = 24 V. VPWR = 3.3 V. Place a 30-Ω load on CCx | 8 | V | ||
SBU OVP Switches | ||||||
RON | On resistance of SBU OVP FETs | SBUx = 3.6 V. –40°C ≤ TJ ≤ +85°C | 4 | 6.5 | Ω | |
RONFLAT | On resistance flatness | Sweep SBUx voltage between 0 V and 3.6 V. –40°C ≤ TJ ≤ +85°C | 0.7 | 1.5 | Ω | |
CON_SBU | Equivalent on capacitance | Capacitance from SBUx or C_SBUx to GND when device is powered. Measure at VC_SBUx/VSBUx = 0.3 V to 3.6 V | 6 | pF | ||
VOVPSBU | OVP threshold on SBU pins | Place 3.6 V on C_SBUx. Step up C_SBUx until the FLT pin is asserted | 4.35 | 4.5 | 4.7 | V |
VOVPSBU_HYS | Hysteresis on SBU OVP | Place 5 V on C_CCx. Step down the voltage on C_CCx until the FLT pin is deasserted. Measure difference between rising and falling OVP threshold for C_SBUx | 50 | mV | ||
BWON | On bandwidth single ended (–3 dB) | Measure the –3-dB bandwidth from C_SBUx to SBUx. Single ended measurement, 50-Ω system. Vcm = 0.1 V to 3.6 V | 1000 | MHz | ||
XTALK | Crosstalk | Measure crosstalk at f = 1 MHz from SBU1 to C_SBU2 or SBU2 to C_SBU1. Vcm1 = 3.6 V, Vcm2 = 0.3 V. Be sure to terminate open sides to 50 Ω | –80 | dB | ||
VSTBUS_SBU | Short-to-VBUS tolerance on the SBU pins | Hot-Plug C_SBUx with a 1 meter USB Type C Cable. Put a 150-nF capacitor in series with a 40-Ω resistor to GND on SBUx | 24 | V | ||
VSTBUS_SBU_CLAMP | Short-to-VBUS system-side clamping voltage on the SBU pins (SBUx) | Hot-Plug C_SBUx with a 1 meter USB Type C Cable. Hot-Plug voltage C_SBUx = 24 V. VPWR = 3.3 V. Put a 100-nF capacitor in series with a 40-Ω resistor to GND on SBUx | 8 | V | ||
Power Supply and Leakage Currents | ||||||
VPWR_UVLO | VPWR under voltage lockout | Place 1 V on VPWR and raise voltage until SBU or CC FETs turnon | 2.1 | 2.3 | 2.5 | V |
VPWR_UVLO_HYS | VPWR UVLO hysteresis | Place 3 V on VPWR and lower voltage until SBU or CC FETs turnoff; measure difference between rising and falling UVLO to calculate hysteresis | 100 | 150 | 200 | mV |
IVPWR | VPWR supply current | VPWR = 3.3 V (typical), VPWR = 3.6 V (maximum). –40°C ≤ TJ ≤ +85°C. | 90 | 120 | µA | |
ICC_LEAK | Leakage current for CC pins when device is powered | VPWR = 3.3 V, VC_CCx = 3.6 V, CCx pins are floating, measure leakage into C_CCx pins. Result must be same if CCx side is biased and C_CCx is left floating. | 5 | µA | ||
ISBU_LEAK | Leakage current for SBU pins when device is powered | VPWR = 3.3 V, VC_SBUx = 3.6 V, SBUx pins are floating, measure leakge into C_SBUx pins. Result must be same if SBUx side is biased and C_SBUx is left floating. –40°C ≤ TJ ≤ 85°C. | 3 | µA | ||
IC_CC_LEAK_OVP | Leakage current for CC pins when device is in OVP | VPWR = 0 V or 3.3 V, VC_CCx = 24 V, CCx pins are set to 0 V, measure leakage into C_CCx pins | 1200 | µA | ||
IC_SBU_LEAK_OVP | Leakage current for SBU pins when device is in OVP | VPWR = 0 V or 3.3 V, VC_SBUx = 24 V, SBUx pins are set to 0 V, measure leakage into C_SBUx pins | 400 | µA | ||
ICC_LEAK_OVP | Leakage current for CC pins when device is in OVP | VPWR = 0 V or 3.3 V, VC_CCx = 24 V, CCx pins are set to 0 V, measure leakage out of CCx pins | 30 | µA | ||
ISBU_LEAK_OVP | Leakage current for SBU pins when device is in OVP | VPWR = 0 V or 3.3 V, VC_SBUx = 24 V, SBUx pins are set to 0 V, measure leakage out of SBUx pins | –1 | 1 | µA | |
IDx_LEAK | Leakage current for Dx pins | V_Dx = 3.6 V, measure leakage into Dx pins | 1 | µA | ||
FLT Pin | ||||||
VOL | Low-level output voltage | IOL = 3 mA. Measure the voltage at the FLT pin | 0.4 | V | ||
Over Temperature Protection | ||||||
TSD_RISING | The rising over-temperature protection shutdown threshold | 150 | 175 | °C | ||
TSD_FALLING | The falling over-temperature protection shutdown threshold | 130 | 140 | °C | ||
TSD_HYST | The over-temperature protection shutdown threshold hysteresis | 35 | °C | |||
Dx ESD Protection | ||||||
VRWM_POS | Reverse stand-off voltage from Dx to GND | Dx to GND. IDX ≤ 1 µA | 5.5 | V | ||
VRWM_NEG | Reverse stand-off voltage from GND to Dx | GND to Dx | 0 | V | ||
VBR_POS | Break-down voltage from Dx to GND | Dx to GND. IBR = 1 mA | 7 | V | ||
VBR_NEG | Break-down voltage from GND to Dx | GND to Dx. IBR = 8 mA | 0.6 | V | ||
CIO | Dx to GND or GND to Dx | f = 1 MHz, VIO = 2.5 V | 1.7 | pF | ||
ΔCIO | Differential capacitance between two Dx pins | f = 1 MHz, VIO = 2.5 V | 0.02 | pF | ||
RDYN | Dynamic on-resistance Dx IEC clamps | Dx to GND or GND to Dx | 0.4 | Ω |
MIN | NOM | MAX | UNIT | ||
---|---|---|---|---|---|
Power-On and Off Timings | |||||
tON | Time from crossing rising VPWR UVLO until CC and SBU OVP FETs are on | 3.5 | ms | ||
dVPWR_OFF/dt | Minimum slew rate allowed to guarantee CC and SBU FETs turnoff during a power off | –0.5 | V/µs | ||
Over Voltage Protection | |||||
tOVP_RESPONSE_CC | OVP response time on the CC pins. Time from OVP asserted until OVP FETs turnoff | 70 | ns | ||
tOVP_RESPONSE_SBU | OVP response time on the SBU pins. Time from OVP asserted until OVP FETs turnoff | 80 | ns | ||
tOVP_RECOVERY_CC_1 | OVP recovery time on the CC pins. Once an OVP has occurred, the minimum time duration until the CC FETs turn back on. OVP must be removed for CC FETs to turn back on | 21 | 29 | 39 | ms |
tOVP_RECOVERY_SBU_1 | OVP recovery time on the SBU pins. Once an OVP has occurred, the minimum time duration until the SBU FETs turn back on. OVP must be removed for SBU FETs to turn back on | 21 | 29 | 39 | ms |
tOVP_RECOVERY_CC_2 | OVP recovery time on the CC pins. Time from OVP removal until CC FET turns back on, if device has been in OVP > 40 ms | 0.5 | ms | ||
tOVP_RECOVERY_SBU_2 | OVP recovery time on the SBU pins. Time from OVP removal until SBU FET turns back on, if device has been in OVP > 40 ms | 0.5 | ms | ||
tOVP_FLT_ASSERTION | Time from OVP asserted to FLT assertion | 20 | µs | ||
tOVP_FLT_DEASSERTION | Time from CC FET turnon after an OVP to FLT deassertion | 5 | ms |