JAJSD64C april   2017  – february 2023 PGA460

PRODUCTION DATA  

  1. 特長
  2. アプリケーション
  3. 概要
  4. 改訂履歴
  5. ピン構成および機能
  6. 仕様
    1. 6.1  絶対最大定格
    2. 6.2  ESD 定格
    3. 6.3  推奨動作条件
    4. 6.4  熱に関する情報
    5. 6.5  内部電源レギュレータの特性
    6. 6.6  トランスデューサ・ドライバ特性
    7. 6.7  トランスデューサ・レシーバ特性
    8. 6.8  A/D コンバータの特性
    9. 6.9  デジタル信号処理特性
    10. 6.10 温度センサの特性
    11. 6.11 高電圧 I/O 特性
    12. 6.12 デジタル I/O 特性
    13. 6.13 EEPROM の特性
    14. 6.14 タイミング要件
    15. 6.15 スイッチング特性
    16. 6.16 代表的な特性
  7. 詳細説明
    1. 7.1 概要
    2. 7.2 機能ブロック図
    3. 7.3 機能説明
      1. 7.3.1  電源ブロック
      2. 7.3.2  バースト生成
        1. 7.3.2.1 センタータップ・トランスの使用
        2. 7.3.2.2 直接駆動
        3. 7.3.2.3 その他の構成
      3. 7.3.3  アナログ・フロントエンド
      4. 7.3.4  デジタル・シグナル・プロセッサ
        1. 7.3.4.1 超音波エコー - バンドパス・フィルタ
        2. 7.3.4.2 超音波エコー – 整流器、ピーク・ホールド、ローパス・フィルタ、データ選択
        3. 7.3.4.3 超音波エコー - 非線形スケーリング
        4. 7.3.4.4 超音波エコー — スレッショルド・データの割り当て
        5. 7.3.4.5 デジタル・ゲイン
      5. 7.3.5  システム診断
        1. 7.3.5.1 デバイス内部診断
      6. 7.3.6  インターフェイスの説明
        1. 7.3.6.1 時間コマンド・インターフェイス
          1. 7.3.6.1.1 実行コマンド
          2. 7.3.6.1.2 構成 / ステータス・コマンド
        2. 7.3.6.2 USART インターフェイス
          1. 7.3.6.2.1 USART 非同期モード
            1. 7.3.6.2.1.1 同期フィールド
            2. 7.3.6.2.1.2 コマンド・フィールド
            3. 7.3.6.2.1.3 データ・フィールド
            4. 7.3.6.2.1.4 チェックサム・フィールド
            5. 7.3.6.2.1.5 PGA460 UART コマンド
            6. 7.3.6.2.1.6 UARTの動作
              1. 7.3.6.2.1.6.1 無応答動作
              2. 7.3.6.2.1.6.2 応答動作 (レジスタ読み取りを除くすべて)
              3. 7.3.6.2.1.6.3 応答動作 (レジスタ読み取り)
            7. 7.3.6.2.1.7 診断フィールド
            8. 7.3.6.2.1.8 USART 同期モード
          2. 7.3.6.2.2 1 線式 UART インターフェイス
          3. 7.3.6.2.3 UART動作による超音波物体検出
        3. 7.3.6.3 イン・システム IO ピン・インターフェイスの選択
      7. 7.3.7  エコー・データ・ダンプ
        1. 7.3.7.1 オンボード・メモリ・データ保存
        2. 7.3.7.2 USART 同期モードによるダイレクト・データ・バースト
      8. 7.3.8  低消費電力モード
        1. 7.3.8.1 時間コマンド・インターフェイス
        2. 7.3.8.2 UART インターフェイス
      9. 7.3.9  トランスデューサの時間および温度デカップリング
        1. 7.3.9.1 時間デカップリング
        2. 7.3.9.2 温度デカップリング
      10. 7.3.10 メモリ CRC 計算
      11. 7.3.11 温度センサと温度データパス
      12. 7.3.12 TEST ピンの機能
    4. 7.4 デバイスの機能モード
    5. 7.5 プログラミング
      1. 7.5.1 UART および USART 通信の例
    6. 7.6 レジスタ・マップ
      1. 7.6.1 EEPROM のプログラミング
      2. 7.6.2 レジスタ・マップ・パーティショニングとデフォルト値
      3. 7.6.3 REGMAP レジスタ
  8. アプリケーションと実装
    1. 8.1 アプリケーション情報
      1. 8.1.1 トランスデューサのタイプ
    2. 8.2 代表的なアプリケーション
      1. 8.2.1 トランス駆動方式
        1. 8.2.1.1 設計要件
        2. 8.2.1.2 詳細な設計手順
          1. 8.2.1.2.1 トランスデューサ駆動電圧
          2. 8.2.1.2.2 トランスデューサ駆動周波数
          3. 8.2.1.2.3 トランスデューサのパルス数
          4. 8.2.1.2.4 トランスの巻線比
          5. 8.2.1.2.5 トランスの飽和電流と電源電圧定格
        3. 8.2.1.3 アプリケーション曲線
      2. 8.2.2 直接駆動 (トランスレス) 方式
        1. 8.2.2.1 設計要件
        2. 8.2.2.2 詳細な設計手順
        3. 8.2.2.3 アプリケーション曲線
    3. 8.3 電源に関する推奨事項
    4. 8.4 レイアウト
      1. 8.4.1 レイアウトのガイドライン
      2. 8.4.2 レイアウト例
  9. デバイスおよびドキュメントのサポート
    1. 9.1 ドキュメントのサポート
      1. 9.1.1 関連資料
    2. 9.2 ドキュメントの更新通知を受け取る方法
    3. 9.3 サポート・リソース
    4. 9.4 商標
    5. 9.5 静電気放電に関する注意事項
    6. 9.6 用語集
  10. 10メカニカル、パッケージ、および注文情報

超音波エコー - 非線形スケーリング

DSP データ・パスの非線形スケーリング・ブロックは、エコー信号の指数関数スケーリング (デジタル非線形増幅) を行い、より高い SNR を実現します。この機能は、遠い距離にある物体を検出する際に、エコー信号の振幅が非常に減衰してノイズ・フロアに近い場合に役立ちます。

非線形スケーリング・ブロックは、以下のアルゴリズムを実行します。

式 3. GUID-71D0508D-677C-43A5-8652-34AE0105248A-low.gif

ここで、

  • t は現在の記録時間です。
  • Time_Offset (時間オフセット) は、SCALE_N パラメータによって設定され、超音波エコー — スレッショルド・データの割り当て セクションで定義されている TH9、TH10、TH11、TH12 のいずれかの時点を選択するために使用されます。
  • Scale_Exponent (スケール指数) は、非線形の指数 (1.5 または 2) であり、SCALE_K ビットによって定義されます。
  • Noise_Level (ノイズレベル) は、1 LSB ステップ、0~31 の範囲でユーザーが設定したノイズ・レベルであり、NOISE_LVLビットによって定義されます。

SCALE_N、SCALE_K および NOISE_LVL ビットは、DSP_SCALE レジスタの EEPROM パラメータです。

注:

非線形スケーリング・ブロックは、プリセット 1 およびプリセット 2 に適用できます。