JAJSE26 October 2017 MSP432E411Y
PRODUCTION DATA.
MIN | MAX | UNIT | ||
---|---|---|---|---|
VDD | VDD supply voltage | 0 | 4 | V |
VDDA | VDDA supply voltage | 0 | 4 | V |
VBAT | VBAT battery supply voltage | 0 | 4 | V |
VBATRMP | VBAT battery supply voltage ramp time | 0 | 0.7 | V/µs |
VIN_GPIO | Input voltage (3) | –0.3 | 4 | V |
IGPIOMAX | Maximum current per output pin | 64 | mA | |
TS | Unpowered storage temperature range | –65 | 150 | °C |
TJMAX | Maximum junction temperature | 125 | °C |
VALUE | UNIT | |||
---|---|---|---|---|
V(ESD) | Electrostatic discharge | Human-body model (HBM), per ANSI/ESDA/JEDEC JS‑001 (1) (3) | ±2000 | V |
Charged-device model (CDM), per JEDEC specification JESD22‑C101 (2) | ±500 |
MIN | MAX | UNIT | |||
---|---|---|---|---|---|
TA | Ambient operating temperature range | Extended temperature | –40 | 105 | °C |
TJ | Junction operating temperature range | Extended temperature | –40 | 125 | °C |
MIN | NOM | MAX | UNIT | ||
---|---|---|---|---|---|
VDD | VDD supply voltage | 2.97 | 3.3 | 3.63 | V |
VDDA | VDDA supply voltage (1) | 2.97 | 3.3 | 3.63 | V |
VDDC | VDDC supply voltage, run mode | 1.14 | 1.2 | 1.32 | V |
VDDCDS | VDDC supply voltage, deep-sleep mode | 0.85 | 0.95 | V |
The following sections describe the recommended GPIO operating characteristics for the device.
Two types of pads are provided on the device:
NOTE
Port pins PL6 and PL7 operate as fast GPIO pads, but have 4-mA drive capability only. GPIO register controls for drive strength, slew rate and open drain have no effect on these pins. The registers which have no effect are as follows: GPIODR2R, GPIODR4R, GPIODR8R, GPIODR12R, GPIOSLR, and GPIOODR.
NOTE
Port pins PM[7:4] operate as fast GPIO pads but support only 2-, 4-, 6-, and 8-mA drive capability. 10- and 12-mA drive are not supported. All standard GPIO register controls, except for the GPIODR12R register, apply to these port pins.
MIN | NOM | MAX | UNIT | |||
---|---|---|---|---|---|---|
VIH | Fast GPIO high-level input voltage | 0.65 × VDD | 4 | V | ||
IIH | Fast GPIO high-level input current | 300 | nA | |||
VIL | Fast GPIO low-level input voltage | 0 | 0.35 × VDD | V | ||
IIL | Fast GPIO low-level input current (2) | –200 | nA | |||
VHYS | Fast GPIO input hysteresis | 0.49 | V | |||
VOH | Fast GPIO high-level output voltage | 2.4 | V | |||
VOL | Fast GPIO low-level output voltage | 0.40 | V | |||
IOH | Fast GPIO high-level source current, VOH = 2.4 V (1) | 2-mA drive | 2.0 | mA | ||
4-mA drive | 4.0 | |||||
8-mA drive | 8.0 | |||||
10-mA drive | 10.0 | |||||
12-mA drive | 12.0 | |||||
IOL | Fast GPIO low-level sink current, VOL = 0.4 V (1) | 2-mA drive | 2.0 | mA | ||
4-mA drive | 4.0 | |||||
8-mA drive | 8.0 | |||||
10-mA drive | 10.0 | |||||
12-mA drive | 12.0 | |||||
12-mA drive overdriven to 18 mA | 18.0 |
MIN | NOM | MAX | UNIT | |||
---|---|---|---|---|---|---|
VIH | Slow GPIO high-level input voltage | 0.65 × VDD | 4 | V | ||
IIH | Slow GPIO high-level input current | 4.1 | nA | |||
VIL | Slow GPIO low-level input voltage | 0 | 0.35 × VDD | V | ||
IIL | Slow GPIO low-level input current (2) | –1 | nA | |||
VHYS | Slow GPIO input hysteresis | 0.49 | V | |||
VOH | Slow GPIO high-level output voltage | 2.4 | V | |||
VOL | Slow GPIO low-level output voltage | 0.4 | V | |||
IOH | Slow GPIO high-level source current, VOH = 2.4 V, 2-mA drive | 2.0 | mA | |||
IOL | Slow GPIO low-level sink current, VOL = 0.4 V (1), 2-mA drive | 2.0 | mA |
MIN | NOM | MAX | UNIT | ||
---|---|---|---|---|---|
IMAXL | Cumulative maximum GPIO current per side, left | 110 | mA | ||
IMAXB | Cumulative maximum GPIO current per side, bottom (2) | 116 | mA | ||
IMAXR | Cumulative maximum GPIO current per side, right (2) | 110 | mA | ||
IMAXT | Cumulative maximum GPIO current per side, top (2) | 88 | mA |
SIDE | GPIOs |
---|---|
Left | PB[6-7], PC[4-7], PD[0-3], PE[0-3], PH[0-7], PJ[6-7], PK[0-3], PQ[0-3,7], PR[0-5] |
Bottom | PA[0-7], PF[0-7], PG[0-7], PK[4-7], PN[6-7], PR[3,6-7], PQ[5-6], PS[4-7], PT[0-1] |
Right | PB[0-3], PJ[2-5], PL[0-5,6-7], PM[0-7], PT[2-3] |
Top | PB[4-5], PC[0-3], PD[4-7], PE[4-7], PJ[0-1], PN[0-5], PP[0-7], PQ[4], PS[0-3] |
For typical continuous drive applications, I/O pins configured in the range from 2 mA to 12 mA and operating at –40°C to 85°C meet the standard 10-year lifetime reliability. If a continuous current sink of 18 mA is required, then operation is limited to 0 to 75°C to meet the standard 10-year reliability.
At 105°C, I/O pins configured for continuous drive meet the standard 2.5-year lifetime reliability.
In typical switching applications (40% switch rate) operating at –40°C to 85°C, all I/O configurations except 2 mA meet the standard 10-year lifetime reliability with 50-pF loading. By limiting the capacitive loading to 20 pF for an I/O configured to 2 mA, the 10-year lifetime reliability can be met at –40°C to 85°C.
In typical switching applications (40% switch rate) operating at 105°C, all I/O configurations except 2 mA meet the standard 2.5-year lifetime reliability. By reducing the capacitive loading to 20 pF with a typical switching rate at 105°C, a 2-mA I/O configuration meets a 2.5-year lifetime reliability.
PARAMETER | TEST CONDITIONS | SYSTEM CLOCK | TYP | MAX | UNIT | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
FREQ | CLOCK SOURCE | –40°C | 25°C | 85°C | 105°C | 85°C | 105°C (2) | ||||
IDD_RUN | Run mode (flash loop) | VDD = 3.3 V, VDDA = 3.3 V, Peripherals = All on including MAC and PHY |
120 MHz | MOSC with PLL | 96.4 | 105.3 | 107.2 | 108.7 | 129.9 | 140.0 | mA |
60 MHz | MOSC with PLL | 67.4 | 76.6 | 78.6 | 79.9 | 100.3 | 112.5 | ||||
16 MHz | PIOSC | 11.9 | 24.4 | 25.5 | 26.7 | 45.0 | 56.4 | ||||
1 MHz | PIOSC | 5.75 | 10.9 | 12.1 | 13.3 | 31.3 | 42.6 | ||||
VDD = 3.3 V, VDDA = 3.3 V, Peripherals = All on including MAC but not PHY |
120 MHz | MOSC with PLL | 69.9 | 77.8 | 79.6 | 80.8 | 98.8 | 108.4 | |||
60 MHz | MOSC with PLL | 40.9 | 49.2 | 50.9 | 52.1 | 69.2 | 80.8 | ||||
16 MHz | PIOSC | 11.3 | 23.6 | 25.0 | 26.2 | 43.1 | 54.3 | ||||
1 MHz | PIOSC | 5.10 | 10.1 | 11.5 | 12.7 | 29.3 | 40.5 | ||||
VDD = 3.3 V, VDDA = 3.3 V, Peripherals = All on except MAC and PHY |
120 MHz | MOSC with PLL | 68.1 | 76.0 | 77.6 | 78.6 | 96.6 | 106.0 | |||
60 MHz | MOSC with PLL | 40.0 | 48.2 | 49.8 | 50.8 | 67.9 | 79.2 | ||||
16 MHz | PIOSC | 11.1 | 23.3 | 24.6 | 25.6 | 42.5 | 53.3 | ||||
1 MHz | PIOSC | 5.07 | 10.1 | 11.3 | 12.3 | 29.0 | 39.8 | ||||
VDD = 3.3 V, VDDA = 3.3 V, Peripherals = All off |
120 MHz | MOSC with PLL | 35.2 | 39.1 | 40.4 | 41.5 | 55.8 | 65.3 | |||
60 MHz | MOSC with PLL | 23.2 | 29.4 | 30.7 | 31.7 | 45.8 | 55.5 | ||||
16 MHz | PIOSC | 7.38 | 17.9 | 19.0 | 20.0 | 34.5 | 44.1 | ||||
1 MHz | PIOSC | 4.12 | 9.13 | 10.3 | 11.4 | 25.7 | 35.5 | ||||
Run mode (SRAM loop) | VDD = 3.3 V, VDDA = 3.3 V, Peripherals = All on including MAC and PHY |
120 MHz | MOSC with PLL | 93.8 | 103.6 | 111.6 | 113.2 | 133.4 | 144.6 | ||
60 MHz | MOSC with PLL | 66.9 | 76.7 | 78.7 | 80.0 | 100.0 | 111.9 | ||||
16 MHz | PIOSC | 12.6 | 19.0 | 20.1 | 21.3 | 39.1 | 50.3 | ||||
1 MHz | PIOSC | 5.73 | 10.6 | 11.7 | 12.8 | 30.9 | 42.2 | ||||
VDD = 3.3 V, VDDA = 3.3 V, Peripherals = All on including MAC but not PHY |
120 MHz | MOSC with PLL | 67.2 | 76.1 | 84.0 | 85.4 | 102.3 | 113.0 | |||
60 MHz | MOSC with PLL | 40.3 | 49.2 | 50.9 | 52.2 | 68.9 | 80.2 | ||||
16 MHz | PIOSC | 11.9 | 18.2 | 19.6 | 20.8 | 37.2 | 48.2 | ||||
1 MHz | PIOSC | 5.08 | 9.79 | 11.2 | 12.3 | 28.9 | 40.1 | ||||
VDD = 3.3 V, VDDA = 3.3 V, Peripherals =All on except MAC and PHY |
120 MHz | MOSC with PLL | 65.4 | 74.3 | 82.0 | 83.2 | 100.1 | 110.6 | |||
60 MHz | MOSC with PLL | 39.4 | 48.2 | 49.8 | 50.9 | 67.6 | 78.6 | ||||
16 MHz | PIOSC | 11.7 | 17.9 | 19.2 | 20.2 | 36.6 | 47.2 | ||||
1 MHz | PIOSC | 5.05 | 9.75 | 11.0 | 11.9 | 28.6 | 39.4 | ||||
VDD = 3.3 V, VDDA = 3.3 V, Peripherals = All off |
120 MHz | MOSC with PLL | 35.4 | 43.3 | 44.7 | 45.8 | 59.8 | 69.0 | |||
60 MHz | MOSC with PLL | 23.4 | 29.4 | 30.7 | 31.7 | 45.5 | 54.9 | ||||
16 MHz | PIOSC | 7.08 | 12.4 | 13.6 | 14.6 | 28.7 | 38.0 | ||||
1 MHz | PIOSC | 4.60 | 8.78 | 10.0 | 11.0 | 25.3 | 34.9 | ||||
IDD_SLEEP | Sleep mode (FLASHPM = 0x0) | VDD = 3.3 V, VDDA = 3.3 V, Peripherals = All on including MAC and PHY, LDO = 1.2 V |
120 MHz | MOSC with PLL | 82.8 | 94.8 | 96.8 | 98.1 | 117.9 | 129.1 | mA |
60 MHz | MOSC with PLL | 60.8 | 69.2 | 71.2 | 72.3 | 91.8 | 102.9 | ||||
16 MHz | PIOSC | 11.2 | 16.8 | 18.1 | 19.1 | 35.4 | 45.9 | ||||
1 MHz | PIOSC (3) | 5.10 | 10.3 | 11.5 | 12.6 | 28.9 | 39.6 | ||||
VDD = 3.3 V, VDDA = 3.3 V, Peripherals = All on including MAC but not PHY, LDO = 1.2 V |
120 MHz | MOSC with PLL | 56.2 | 67.4 | 69.1 | 70.3 | 87.1 | 97.8 | |||
60 MHz | MOSC with PLL | 34.4 | 41.9 | 43.4 | 44.5 | 60.7 | 71.6 | ||||
16 MHz | PIOSC (3) | 10.6 | 16.2 | 17.5 | 18.5 | 34.5 | 45.1 | ||||
1 MHz | PIOSC (3) | 4.47 | 9.60 | 10.9 | 12.0 | 28.0 | 38.7 | ||||
VDD = 3.3 V, VDDA = 3.3 V, Peripherals = All on except MAC and PHY, LDO = 1.2 V |
120 MHz | MOSC with PLL | 54.4 | 65.6 | 67.1 | 68.1 | 84.9 | 95.4 | |||
60 MHz | MOSC with PLL | 33.5 | 40.9 | 42.3 | 43.2 | 59.4 | 70.0 | ||||
16 MHz | PIOSC (3) | 10.4 | 15.9 | 17.1 | 17.9 | 33.9 | 44.1 | ||||
1 MHz | PIOSC (3) | 4.44 | 9.56 | 10.7 | 11.6 | 27.7 | 38.0 | ||||
VDD = 3.3 V, VDDA = 3.3 V, Peripherals = All off, LDO = 1.2 V |
120 MHz | MOSC with PLL | 22.0 | 28.6 | 29.8 | 30.7 | 44.1 | 53.1 | |||
60 MHz | MOSC with PLL | 16.3 | 22.0 | 23.2 | 24.1 | 37.5 | 46.6 | ||||
16 MHz | PIOSC (3) | 5.37 | 10.4 | 11.5 | 12.4 | 26.1 | 35.1 | ||||
1 MHz | PIOSC (3) | 4.37 | 8.60 | 9.71 | 10.6 | 24.6 | 33.9 | ||||
Sleep mode (FLASHPM = 0x2) | VDD = 3.3 V, VDDA = 3.3 V, Peripherals = All on including MAC and PHY, LDO = 1.2 V |
120 MHz | MOSC with PLL | 86.5 | 89.0 | 91.2 | 92.5 | 112.1 | 123.5 | ||
60 MHz | MOSC with PLL | 61.6 | 63.4 | 65.6 | 66.7 | 86.0 | 97.2 | ||||
16 MHz | PIOSC (3) | 10.4 | 11.1 | 12.4 | 13.5 | 29.8 | 40.4 | ||||
1 MHz | PIOSC (3) | 4.45 | 4.49 | 5.83 | 6.98 | 23.4 | 34.2 | ||||
VDD = 3.3 V, VDDA = 3.3 V, Peripherals = All on including MAC but not PHY, LDO = 1.2 V |
120 MHz | MOSC with PLL | 59.9 | 61.7 | 63.4 | 64.7 | 81.3 | 92.1 | |||
60 MHz | MOSC with PLL | 35.1 | 36.1 | 37.8 | 38.9 | 54.9 | 66.0 | ||||
16 MHz | PIOSC (3) | 9.75 | 10.4 | 11.8 | 12.9 | 28.9 | 39.6 | ||||
1 MHz | PIOSC (3) | 3.82 | 3.82 | 5.25 | 6.38 | 22.5 | 33.4 | ||||
VDD = 3.3 V, VDDA = 3.3 V, Peripherals = All on except MAC and PHY, LDO = 1.2 V |
120 MHz | MOSC with PLL | 58.1 | 59.9 | 61.4 | 62.5 | 79.1 | 89.7 | |||
60 MHz | MOSC with PLL | 34.2 | 35.1 | 36.7 | 37.6 | 53.6 | 64.4 | ||||
16 MHz | PIOSC (3) | 9.50 | 10.1 | 11.4 | 12.3 | 28.3 | 38.6 | ||||
1 MHz | PIOSC (3) | 3.79 | 3.78 | 5.06 | 5.96 | 22.2 | 32.7 | ||||
VDD = 3.3 V, VDDA = 3.3 V, Peripherals = All off, LDO = 1.2 V |
120 MHz | MOSC with PLL | 22.0 | 22.8 | 24.1 | 25.1 | 38.2 | 47.4 | |||
60 MHz | MOSC with PLL | 15.7 | 16.2 | 17.5 | 18.5 | 31.7 | 40.9 | ||||
16 MHz | PIOSC (3) | 4.50 | 4.60 | 5.80 | 6.80 | 20.5 | 29.8 | ||||
1 MHz | PIOSC (3) | 3.00 | 2.80 | 4.10 | 5.20 | 19.1 | 28.7 | ||||
IDD_DEEPSLEEP | Deep-sleep mode (FLASHPM = 0x2) | VDD = 3.3 V, VDDA = 3.3 V, Peripherals = All on, LDO = 1.2 V |
16 MHz | PIOSC | 9.74 | 9.78 | 10.8 | 11.6 | 24.1 | 32.1 | mA |
30 kHz | LFIOSC | 2.60 | 2.83 | 3.83 | 4.60 | 17.1 | 25.3 | ||||
VDD = 3.3 V, VDDA = 3.3 V, Peripherals = All off, LDO = 1.2 V |
16 MHz | PIOSC | 4.53 | 4.05 | 4.88 | 5.53 | 15.9 | 22.7 | |||
30 kHz | LFIOSC | 0.614 | 0.762 | 1.69 | 2.46 | 13.3 | 20.7 | ||||
VDD = 3.3 V, VDDA = 3.3 V, Peripherals = All on, LDO = 0.9 V |
16 MHz | PIOSC | 5.21 | 7.33 | 7.97 | 8.48 | 15.3 | 20.1 | |||
30 kHz | LFIOSC | 2.02 | 2.16 | 2.79 | 3.29 | 10.0 | 14.9 | ||||
VDD = 3.3 V, VDDA = 3.3 V, Peripherals = All off, LDO = 0.9 V (4) |
16 MHz | PIOSC | 1.08 | 3.10 | 3.61 | 4.01 | 9.50 | 13.4 | |||
30 kHz | LFIOSC | 0.367 | 0.454 | 0.954 | 1.36 | 6.86 | 10.8 | ||||
IDDA_RUN, IDDA_SLEEP | All run modes | VDD = 3.3 V, VDDA = 3.3 V, Peripherals = All on |
120 MHz | MOSC with PLL | 2.61 | 2.66 | 2.68 | 2.66 | 3.03 | 3.35 | mA |
60 MHz | MOSC with PLL | 2.61 | 2.66 | 2.68 | 2.66 | 3.04 | 3.10 | ||||
16 MHz | PIOSC | 2.45 | 2.49 | 2.50 | 2.48 | 2.85 | 2.95 | ||||
1 MHz | PIOSC | 2.45 | 2.48 | 2.50 | 2.48 | 2.84 | 2.90 | ||||
All sleep modes | VDD = 3.3 V, VDDA = 3.3 V, Peripherals = All off |
120 MHz | MOSC with PLL | 0.227 | 0.229 | 0.270 | 0.250 | 0.559 | 0.650 | ||
60 MHz | MOSC with PLL | 0.229 | 0.232 | 0.267 | 0.250 | 0.579 | 0.600 | ||||
16 MHz | PIOSC | 0.228 | 0.229 | 0.265 | 0.251 | 0.545 | 0.575 | ||||
1 MHz | PIOSC | 0.227 | 0.227 | 0.267 | 0.247 | 0.549 | 0.555 | ||||
IDDA_DEEPSLEEP | Deep-sleep mode (FLASHPM = 0x2) | VDD = 3.3 V, VDDA = 3.3 V, Peripherals = All on, LDO = 1.2 V |
16 MHz | PIOSC | 2.45 | 2.48 | 2.50 | 2.48 | 2.84 | 2.90 | mA |
30 kHz | LFIOSC | 2.45 | 2.48 | 2.50 | 2.48 | 2.85 | 2.90 | ||||
VDD = 3.3 V, VDDA = 3.3 V, Peripherals = All off, LDO = 1.2 V |
16 MHz | PIOSC | 0.226 | 0.227 | 0.265 | 0.249 | 0.558 | 0.635 | |||
30 kHz | LFIOSC | 0.228 | 0.227 | 0.272 | 0.247 | 0.558 | 0.600 | ||||
VDD = 3.3 V, VDDA = 3.3 V, Peripherals = All on, LDO = 0.9 V (4) |
16 MHz | PIOSC | 2.14 | 2.42 | 2.44 | 2.42 | 2.78 | 2.88 | |||
30 kHz | LFIOSC | 2.44 | 2.42 | 2.44 | 2.42 | 2.86 | 2.88 | ||||
VDD = 3.3 V, VDDA = 3.3 V, Peripherals = All off, LDO = 0.9 V (4) |
16 MHz | PIOSC | 0.216 | 0.166 | 0.209 | 0.193 | 0.563 | 0.580 | |||
30 kHz | LFIOSC | 0.223 | 0.167 | 0.209 | 0.189 | 0.508 | 0.580 | ||||
IHIB_NORTC | Hibernate mode (external wake, RTC disabled) | VBAT = 3.0 V VDD = 0 V, VDDA = 0 V, System clock = OFF, Hibernate module = 32.768 kHz |
1.04 | 1.20 | 1.44 | 1.69 | 1.62 | 2.14 | µA | ||
IHIB_RTC | Hibernate mode (RTC enabled) | VBAT = 3.0 V, VDD = 0 V, VDDA = 0 V, System clock = OFF, Hibernate module = 32.768 kHz |
1.12 | 1.29 | 1.54 | 1.82 | 1.75 | 2.33 | µA | ||
IHIB_VDD3ON | Hibernate mode (VDD3ON mode, tamper enabled) | VBAT = 3.0 V, VDD = 3.3 V, VDDA = 3.3 V, System clock = OFF, Hibernate module = 32.768 kHz |
6.78 | 7.99 | 17.0 | 22.1 | 31.0 | 46.2 | µA | ||
Hibernate mode (VDD3ON mode, tamper disabled) | VBAT = 3.0 V, VDD = 3.3 V, VDDA = 3.3 V, System clock = OFF, Hibernate module = 32.768 kHz |
5.42 | 6.39 | 15.4 | 17.8 | 28.9 | 32.0 |
PARAMETER | TEST CONDITIONS | SYSTEM CLOCK | TYP | UNIT | |
---|---|---|---|---|---|
IDDUSB | USB (including USB PHY) run mode current | VDD = 3.3 V, VDDA = 3.3 V |
120 MHz (MOSC with PLL) | 4.0 | mA |
IDDEMAC | Ethernet MAC run mode current | VDD = 3.3 V, VDDA = 3.3 V |
120 MHz (MOSC with PLL) | 1.9 | mA |
IDDEMACPHY | Ethernet MAC and PHY run mode current | VDD = 3.3 V, VDDA = 3.3 V |
120 MHz (MOSC with PLL) | 30 | mA |
PARAMETER | MIN | TYP | MAX | UNIT | |
---|---|---|---|---|---|
CLDO | External filter capacitor size for internal power supply(1) | 2.5 | 4.0 | µF | |
ESR | Filter capacitor equivalent series resistance | 0 | 100 | mΩ | |
ESL | Filter capacitor equivalent series inductance | 0.5 | nH | ||
VLDO | LDO output voltage, run mode | 1.13 | 1.2 | 1.27 | V |
IINRUSH | Inrush current | 50 | 250 | mA |
PARAMETER | TA | TJ | MIN | MAX | UNIT | |
---|---|---|---|---|---|---|
PDE | Extended temperature device power dissipation | 105°C (extended temperature part) | 125°C (extended temperature part) | 509 | mW |
THERMAL METRIC | VALUE | UNIT | |
---|---|---|---|
θJA | Thermal resistance (junction to ambient) (1) | 39.3 | °C/W |
θJB | Thermal resistance (junction to board) (1) | 18.6 | °C/W |
θJC | Thermal resistance (junction to case) (1) | 12.9 | °C/W |
ΨJT | Thermal metric (junction to top of package) | 0.2 | °C/W |
ΨJB | Thermal metric (junction to board) | 18.4 | °C/W |
TJ | Junction temperature formula | TC + (P × ΨJT) (2)
TPCB + (P × ΨJB) (3) TA + (P × θJA) (4) TB + (P × θJB) (5) (6) |
°C |
Table 5-2 shows the load conditions used for timing measurements, and Table 5-2 lists the load values for the specified signals.
SIGNALS | LOAD VALUE (CL) |
---|---|
LCDDATA[23:0] | 25 pF |
EPI0S[35:0] SDRAM interface | 30 pF |
EPI0S[35:0] general-purpose interface | |
EPI0S[35:0] host-bus interface | |
EPI0S[35:0] PSRAM interface | 40 pF |
All other digital I/O signals | 50 pF |
To ensure proper operation, power on VDDA before VDD if sourced from different supplies, or connect VDDA to the same supply as VDD. No restriction exists for powering off.
NO. | PARAMETER | MIN | TYP | MAX | UNIT | |
---|---|---|---|---|---|---|
P1 | tVDDA_RISE | Analog supply voltage (VDDA) rise time | ∞ | µs | ||
P2 | tVDD_RISE | I/O supply voltage (VDD) rise time | ∞ | µs | ||
P3 | tVDDC_RISE | Core supply voltage (VDDC) rise time | 10 | 150 | µs | |
P4 | VPOR | Power-on reset threshold (rising edge) | 1.98 | 2.35 | 2.72 | V |
Power-on reset threshold (falling edge) | 1.84 | 2.20 | 2.56 | |||
Power-on reset hysteresis | 0.06 | 0.15 | 0.24 | |||
P5 | VDDA_POK | VDDA power-OK threshold (rising edge) | 2.67 | 2.82 | 2.97 | V |
P6 | VDDA_BOR0 | VDDA brownout reset threshold | 2.71 | 2.80 | 2.89 | V |
P7 | VDD_POK | VDD power-OK threshold (rising edge) | 2.65 | 2.80 | 2.90 | V |
VDD power-OK threshold (falling edge) | 2.67 | 2.76 | 2.85 | |||
P8 | VDD_BOR0 | VDD brownout reset threshold | 2.77 | 2.86 | 2.95 | V |
P9 | VDDC_POK | VDDC power-OK threshold (rising edge) | 0.85 | 0.95 | 1.10 | V |
VDDC power-OK threshold (falling edge) | 0.71 | 0.80 | 0.85 |
The VDDA supply has three monitors:
The POR monitor is used to keep the analog circuitry in reset until the VDDA supply reaches the correct range for the analog circuitry to begin operating. The POK monitor is used to keep the digital circuitry in reset until the VDDA power supply is at an acceptable operational level. The digital reset is only released when the Power-On Reset has deasserted and the Power-OK monitor for each supply indicates that power levels are in operational ranges. The BOR monitor is used to generate a reset to the device or assert an interrupt if the VDDA supply drops below its operational range.
NOTE
VDDA BOR and VDD BOR events are a combined BOR to the system logic, such that if either BOR event occurs, the following bits are affected:
In addition, the following bits control both BOR events:
See the System Control chapter of the MSP432E4 SimpleLink™ Microcontrollers Technical Reference Manual for more information on how to configure these registers.
Figure 5-2 shows the relationship between VDDA, POK, POR, and a BOR event.
The VDD supply has two monitors:
The POK monitor is used to keep the digital circuitry in reset until the VDD power supply reaches an acceptable operational level. The digital reset is only released when the POR has deasserted and the POK monitor for each supply indicates that power levels are in operational ranges. The BOR monitor is used to generate a reset to the device or assert an interrupt if the VDD supply drops below its operational range.
NOTE
VDDA BOR and VDD BOR events are a combined BOR to the system logic, such that if either BOR event occurs, the following bits are affected:
In addition, the following bits control both BOR events:
See the System Control chapter of the MSP432E4 SimpleLink™ Microcontrollers Technical Reference Manual for more information on how to configure these registers.
Figure 5-3 shows the relationship between VDD, POK, POR, and a BOR event.
The VDDC supply has one monitor, the Power-OK (POK). The POK monitor is used to keep the digital circuitry in reset until the VDDC power supply reaches an acceptable operational level. The digital reset is only released when the power-on reset has deasserted and the POK monitor for each supply indicates that power levels are in operational ranges. Figure 5-4 shows the relationship between POK and VDDC.
Figure 5-5 shows the response of the BOR and the POR circuit to glitches on the VDD supply.
Figure 5-6 shows the response of the BOR and the POR monitors to a drop on the VDD supply.
Table 5-4 lists the reset characteristics.
NO. | PARAMETER | MIN | TYP | MAX | UNIT | |
---|---|---|---|---|---|---|
R1 | tDPORDLY | Digital POR to internal reset assertion delay (see Figure 5-7) | 0.44 | 126 | µs | |
R2 | tIRTOUT (1) (2) | Standard internal reset time | 14 | 16 | ms | |
Internal reset time with recovery code repair (program or erase)(3) | 24.4 | 6400(7) | ||||
R3 | tBOR0DLY (1) | BOR0 to internal reset assertion delay (6) (see Figure 5-8) | 0.44 | 125 | µs | |
R4 | tRSTMIN | Minimum RST pulse duration | 0.25(4) or 100(5) | µs | ||
R5 | tIRHWDLY | RST to internal reset assertion delay (see Figure 5-9) | 0.85 | µs | ||
R6 | tIRSWR (1) | Internal reset time-out after software-initiated system reset (see Figure 5-10) | 2.44 | µs | ||
R7 | tIRWDR (1) | Internal reset time-out after watchdog reset (see Figure 5-11) | 2.44 | µs | ||
R8 | tIRMFR (1) | Internal reset time-out after MOSC failure reset (see Figure 5-12) | 2.44 | µs |
The digital power-on reset is released only when the analog power-on reset has deasserted and the Power-OK monitor for each supply indicates that power levels are in operational ranges.
The following sections provide specifications on the various clock sources and mode.
Table 5-5 lists the PLL characteristics.
NOTE
If the integrated Ethernet PHY is used, fREF_XTAL and fREF_EXT must be 25 MHz.
PARAMETER | MIN | MAX | UNIT | ||
---|---|---|---|---|---|
fREF_XTAL | Crystal reference | 5 | 25 | MHz | |
fREF_EXT | External clock reference | 5 | 25 | MHz | |
fPLLR | PLL VCO frequency at 1.2 V(2) | 100 | 480 | MHz | |
fPLLS | PLL VCO frequency at 0.9 V(1) | 100 | 480 | MHz | |
tREADY | PLL lock time | Enabling the PLL, when PLL is transitioning from power down to power up | 512 × (reference clock period) | µs | |
When the PLL VCO frequency is changed (PLL is already enabled) | 128 × (reference clock period) | ||||
Changing the OSCSRC between MOSC and PIOSC | 128 × (reference clock period) |
The PLL is disabled by default during power-on reset and is enabled later by software if required. Software specifies the output divisor to set the system clock frequency and enables the PLL to drive the output. The PLL is controlled using the PLLFREQ0, PLLFREQ1, and PLLSTAT registers. Changes made to these registers do not become active until after the NEWFREQ bit in the RSCLKCFG register is enabled. The clock source for the main PLL is selected by configuring the PLLSRC field in the Run and Sleep Clock Configuration (RSCLKCFG) register. The PLL allows for the generation of system clock frequencies in excess of the reference clock provided. The reference clocks for the PLL are the PIOSC and the MOSC.
The PLL is controlled by two registers, PLLFREQ0 and PLLFREQ1. The PLL VCO frequency (fVCO) is determined through Equation 1.
where
The Q and N values are programmed in the PLLFREQ1 register. To reduce jitter, program MFRAC to 0x0.
When the PLL is active, the system clock frequency (SysClk) is calculated using Equation 2.
The PLL system divisor factor (PSYSDIV) must be set as 1. Table 5-6 lists examples of the system clock frequency.
fVCO (MHz) | Q | PSYSDIV + 1 | System Clock (SYSCLK) Frequency (MHz) |
---|---|---|---|
480 | 2 | 2 | 120 |
480 | 3 | 2 | 80 |
480 | 4 | 2 | 60 |
480 | 5 | 2 | 48 |
320 | 2 | 2 | 80 |
320 | 3 | 2 | 53 |
320 | 4 | 2 | 40 |
If the main oscillator provides the clock reference to the PLL, the translation provided by hardware and used to program the PLL is available for software in the PLL Frequency n (PLLFREQn) registers. The internal translation provides a translation within ±1% of the targeted PLL VCO frequency. Table 5-7 shows the actual PLL frequency and error for a given crystal choice.
Table 5-7 provides examples of the programming expected for the PLLFREQ0 and PLLFREQ1 registers. The CRYSTAL FREQUENCY column specifies the input crystal frequency and the PLL FREQUENCY column displays the PLL frequency given the values of MINT and N, when Q = 0.
CRYSTAL FREQUENCY (MHz) | MINT | N | REFERENCE FREQUENCY (MHz)(2) | PLL FREQUENCY (MHz) | |
---|---|---|---|---|---|
DECIMAL VALUE | HEXADECIMAL VALUE | ||||
5 | 64 | 0x40 | 0x0 | 5 | 320 |
6 | 160 | 0x35 | 0x2 | 2 | 320 |
8 | 40 | 0x28 | 0x0 | 8 | 320 |
10 | 32 | 0x20 | 0x0 | 10 | 320 |
12 | 80 | 0x50 | 0x2 | 4 | 320 |
16 | 20 | 0x14 | 0x0 | 16 | 320 |
18 | 160 | 0xA0 | 0x8 | 2 | 320 |
20 | 16 | 0x10 | 0x0 | 20 | 320 |
24 | 40 | 0x28 | 0x2 | 8 | 320 |
25 | 64 | 0x40 | 0x4 | 5 | 320 |
5 | 96 | 0x60 | 0x0 | 5 | 480 |
6 | 80 | 0x50 | 0x0 | 6 | 480 |
8 | 60 | 0x3C | 0x0 | 8 | 480 |
10 | 48 | 0x30 | 0x0 | 10 | 480 |
12 | 40 | 0x28 | 0x0 | 12 | 480 |
16 | 30 | 0x1E | 0x0 | 16 | 480 |
18 | 80 | 0x50 | 0x2 | 6 | 480 |
20 | 24 | 0x18 | 0x0 | 20 | 480 |
24 | 20 | 0x14 | 0x0 | 24 | 480 |
25 | 96 | 0x60 | 0x4 | 5 | 480 |
Table 5-8 lists the PIOSC characteristics.
PARAMETER | MIN | NOM | MAX | UNIT | |
---|---|---|---|---|---|
fPIOSC | Factory calibration, 0°C to 105°C: Internal 16-MHz precision oscillator frequency variance across voltage and temperature range when factory calibration is used |
±6% | |||
Factory calibration, –40°C to <0°C | ±10% | ||||
Recalibration: Internal 16-MHz precision oscillator frequency variance when recalibration is used at a specific temperature |
±1% | ||||
tSTART | PIOSC start-up time(1) | 1 | µs |
Table 5-9 lists the characteristics of the low-frequency oscillator.
PARAMETER | MIN | NOM | MAX | UNIT | |
---|---|---|---|---|---|
fLFIOSC | Internal low-frequency oscillator frequency | 10 | 33 | 75 | kHz |
PARAMETER | MIN | NOM | MAX | UNIT | |
---|---|---|---|---|---|
fHIBXOSC (1) | Parallel resonance frequency | 32.768 | kHz | ||
C1, C2 | External load capacitance on XOSC0, XOSC1 pins (2) | 12 | 24 | pF | |
CPKG | Device package stray shunt capacitance (2) | 0.5 | pF | ||
CPCB | PCB stray shunt capacitance (2) | 0.5 | pF | ||
CSHUNT | Total shunt capacitance (2) | 4 | pF | ||
ESR | Crystal effective series resistance, OSCDRV = 0 (3) | 50 | kΩ | ||
Crystal effective series resistance, OSCDRV = 1 (3) | 75 | ||||
DL | Oscillator output drive level | 0.25 | µW | ||
tSTART | Oscillator start-up time, when using a crystal (5) | 600 | 1500 (4) | ms | |
VIH | CMOS input high level, when using an external oscillator with VSupply > 3.3 V | 2.64 | V | ||
CMOS input high level, when using an external oscillator with 1.8 V ≤ VSupply ≤ 3.3 V | 0.8 × VSupply | ||||
VIL (6) | CMOS input low level, when using an external oscillator with 1.8 V ≤ VSupply ≤ 3.63 V | 0.2 × VSupply | V | ||
VHYS (6) | CMOS input buffer hysteresis, when using an external oscillator with 1.8 V ≤ VSupply ≤ 3.63 V | 360 | 960 | 1390 | mV |
DCHIBOSC_EXT | External single-ended (bypass) reference duty cycle | 30% | 70% |
Choose the load capacitors added on the board, C1 and C2, such that Equation 3 is satisfied (see Table 5-10 for typical values).
where
Table 5-11 lists the characteristics of the Hibernation module low-frequency oscillator.
PARAMETER | MIN | NOM | MAX | UNIT | |
---|---|---|---|---|---|
fHIBLFIOSC | Internal low-frequency hibernation oscillator frequency | 10 | 33 | 90 | kHz |
Table 5-12 lists the required characteristics of the main oscillator input.
PARAMETER | MIN | NOM | MAX | UNIT | ||
---|---|---|---|---|---|---|
fMOSC | Parallel resonance frequency | 4 (1) | 25 | MHz | ||
fREF_XTAL_BYPASS | External clock reference (PLL in BYPASS mode) | 0 | 120 | MHz | ||
C1, C2 | External load capacitance on OSC0, OSC1 pins (3) | 12 | 24 | pF | ||
CPKG | Device package stray shunt capacitance (3) | 0.5 | pF | |||
CPCB | PCB stray shunt capacitance (3) | 0.5 | pF | |||
CSHUNT | Total shunt capacitance (3) | 4 | pF | |||
ESR | Crystal effective series resistance | 4 MHz (4) (5) | 300 | Ω | ||
6 MHz (4) (5) | 200 | |||||
8 MHz (4) (5) | 130 | |||||
12 MHz (4) (5) | 120 | |||||
16 MHz (4) (5) | 100 | |||||
25 MHz (4) (5) | 50 | |||||
DL | Oscillator output drive level(7) | OSCPWR | mW | |||
TSTART | Oscillator start-up time, when using a crystal (6) | 18 | ms | |||
VIH | CMOS input high level, when using an external oscillator | 0.65 × VDD | VDD | V | ||
VIL | CMOS input low level, when using an external oscillator | GND | 0.35 × VDD | V | ||
VHYS | CMOS input buffer hysteresis, when using an external oscillator | 150 | mV | |||
DCOSC_EXT | External clock reference duty cycle | 45% | 55% |
The load capacitors added on the board, C1 and C2, should be chosen such that Equation 4 is satisfied (see Table 5-12 for typical values and Table 5-13 for detailed crystal parameter information).
where
Table 5-13 lists part numbers of crystals that have been simulated and confirmed to operate within the specifications in Table 5-12. Other crystals that have nearly identical crystal parameters can be expected to work as well.
In Table 5-13, the crystal parameters labeled C0, C1, and L1 are values that are obtained from the crystal manufacturer. These numbers are usually a result of testing a relevant batch of crystals on a network analyzer. The parameters labeled ESR, DL, and CL are maximum numbers usually available in the data sheet for a crystal.
Table 5-13 also includes three columns of Recommended Component Values. These values apply to system board components. C1 and C2 are the values in picofarads of the load capacitors that should be put on each leg of the crystal pins to ensure oscillation at the correct frequency. Rs is the value in kΩ of a resistor that is placed in series with the crystal between the OSC1 pin and the crystal pin. Rs dissipates some of the power so the Max Dl crystal parameter is not exceeded. Only use the recommended C1, C2, and Rs values with the associated crystal part. The values in the table were used in the simulation to ensure crystal start-up and to determine the worst-case drive level (WC DL). The value in the WC DL column should not be greater than the Max DL crystal parameter. The WC DL value can be used to determine if a crystal with similar parameter values but a lower Max DL value is acceptable.
Manufacturer | Manufacturer Part Number | Holder | Package Size (mm × mm) | Frequency (MHz) | Crystal Specification (Tolerance / Stability) | Crystal Parameters | Recommended Component Values | WC DL (µW) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Typical Values | Max Values | ||||||||||||||
C0 (pF) | C1 (fF) | L1 (mH) | ESR (Ω) | Max DL (µW) | CL (pf) | C1 (pF) | C2 (pF) | Rs (kΩ) | |||||||
NDK | NX8045GB-4.000M-STD-CJL-5 | NX8045GB | 8 × 4.5 | 4 | 30 / 50 ppm | 1.00 | 2.70 | 598.10 | 300 | 500 | 8 | 12 | 12 | 0 | 132 |
FOX | FQ1045A-4 | 2-SMD | 10 × 4.5 | 4 | 30 / 30 ppm | 1.18 | 4.05 | 396.00 | 150 | 500 | 10 | 14 | 14 | 0 | 103 |
NDK | NX8045GB-5.000M-STD-CSF-4 | NX8045GB | 8 × 4.5 | 5 | 30 / 50 ppm | 1.00 | 2.80 | 356.50 | 250 | 500 | 8 | 12 | 12 | 0 | 164 |
NDK | NX8045GB-6.000M-STD-CSF-4 | NX8045GB | 8 × 4.5 | 6 | 30 / 50 ppm | 1.30 | 4.10 | 173.20 | 250 | 500 | 8 | 12 | 12 | 0 | 214 |
FOX | FQ1045A-6 | 2-SMD | 10 × 4.5 | 6 | 30 / 30 ppm | 1.37 | 6.26 | 112.30 | 150 | 500 | 10 | 14 | 14 | 0 | 209 |
NDK | NX8045GB-8.000M-STD-CSF-6 | NX8045GB | 8 × 4.5 | 8 | 30 / 50 ppm | 1.00 | 2.80 | 139.30 | 200 | 500 | 8 | 12 | 12 | 0 | 277 |
FOX | FQ7050B-8 | 4-SMD | 7 × 5 | 8 | 30 / 30 ppm | 1.95 | 6.69 | 59.10 | 80 | 500 | 10 | 14 | 14 | 0 | 217 |
ECS | ECS-80-16-28A-TR | HC49/US | 12.5 × 4.85 | 8 | 50 / 30 ppm | 1.82 | 4.90 | 85.70 | 80 | 500 | 16 | 24 | 24 | 0 | 298 |
Abracon | AABMM-12.0000MHz-10-D-1-X-T | ABMM | 7.2 × 5.2 | 12 | 10 / 20 ppm | 2.37 | 8.85 | 20.5 | 50 | 500 | 10 | 12 | 12 | 2.0 (1) | 124 |
NDK | NX3225GA-12.000MHZ-STD-CRG-2 | NX3225GA | 3.2 × 2.5 | 12 | 20 / 30 ppm | 0.70 | 2.20 | 81.00 | 100 | 200 | 8 | 12 | 12 | 2.5 | 147 |
NDK | NX5032GA-12.000MHZ-LN-CD-1 | NX5032GA | 5 × 3.2 | 12 | 30 / 50 ppm | 0.93 | 3.12 | 56.40 | 120 | 500 | 8 | 12 | 12 | 0 | 362 |
FOX | FQ5032B-12 | 4-SMD | 5 × 3.2 | 12 | 30 / 30 ppm | 1.16 | 4.16 | 42.30 | 80 | 500 | 10 | 14 | 14 | 0 | 370 |
Abracon | AABMM-16.0000MHz-10-D-1-X-T | ABMM | 7.2 × 5.2 | 16 | 10 / 20 ppm | 3.00 | 11.00 | 9.30 | 50 | 500 | 10 | 12 | 12 | 2.0 (1) | 143 |
Ecliptek | ECX-6595-16.000M | HC-49/UP | 13.3 × 4.85 | 16 | 15 / 30 ppm | 3.00 | 12.7 | 8.1 | 50 | 1000 | 10 | 12 | 12 | 2.0 (1) | 139 |
NDK | NX3225GA-16.000MHZ-STD-CRG-2 | NX3225GA | 3.2 × 2.5 | 16 | 20 / 30 ppm | 1.00 | 2.90 | 33.90 | 80 | 200 | 8 | 12 | 12 | 2 | 188 |
NDK | NX5032GA-16.000MHZ-LN-CD-1 | NX5032GA | 5 × 3.2 | 16 | 30 / 50 ppm | 1.02 | 3.82 | 25.90 | 120 (2) | 500 | 8 | 10 | 10 | 0 | 437 |
ECS | ECS-160-9-42-CKM-TR | ECX-42 | 4 × 2.5 | 16 | 10 / 10 ppm | 1.47 | 3.90 | 25.84 | 60 | 300 | 9 | 12 | 12 | 0.5 | 289 |
Abracon | AABMM-25.0000MHz-10-D-1-X-T | ABMM | 7.2 × 5.2 | 25 | 10 / 20 ppm | 3.00 | 11.00 | 3.70 | 50 | 500 | 10 | 12 | 12 | 2.0 (1) | 158 |
Ecliptek | ECX-6593-25.000M | HC-49/UP | 13.3 × 4.85 | 25 | 15 / 30 ppm | 3.00 | 12.8 | 3.2 | 40 | 1000 | 10 | 12 | 12 | 1.5 (1) | 159 |
NDK | NX3225GA-25.000MHZ-STD-CRG-2 | NX3225GA | 3.2 × 2.5 | 25 | 20 / 30 ppm | 1.10 | 4.70 | 8.70 | 50 | 200 | 8 | 12 | 12 | 2 | 181 |
NDK | NX5032GA-25.000MHZ-LD-CD-1 | NX5032GA | 5 × 3.2 | 25 | 30 / 50 ppm | 1.3 | 5.1 | 7.1 | 70 | 500 | 8 | 10 | 10 | 1.0 (1) | 216 |
12 | 12 | 0.75 (3) | 269 | ||||||||||||
AURIS | Q-25.000M-HC3225/4-F-30-30-E-12-TR | HC3225/4 | 3.2 × 2.5 | 25 | 30 / 30 ppm | 1.58 | 5.01 | 8.34 | 50 | 500 | 12 | 16 | 16 | 1 | 331 |
FOX | FQ5032B-25 | 4-SMD | 5 × 3.2 | 25 | 30 / 30 ppm | 1.69 | 7.92 | 5.13 | 50 | 500 | 10 | 14 | 14 | 0.5 | 433 |
TXC | 7A2570018 | NX5032GA | 5 × 3.2 | 25 | 20 / 25 ppm | 2.0 | 6.7 | 6.1 | 30 | 350 | 10 | 12 | 12 | 2.0 (3) | 124 |
Table 5-14 lists the system clock characteristics with ADC operation.
PARAMETER | MIN | NOM | MAX | UNIT | |
---|---|---|---|---|---|
fsysadc | System clock frequency when the ADC module is operating (when PLL is bypassed) | 16 | MHz |
Table 5-15 lists the system clock characteristics with USB operation.
PARAMETER | MIN | NOM | MAX | UNIT | |
---|---|---|---|---|---|
fsysusb | System clock frequency when the USB module is operating (MOSC must be the clock source, either with or without using the PLL) | 30 | MHz |
The following tables can be used to calculate the maximum wake time from sleep or deep sleep mode, depending on the specific application. Depending on the application configuration, each parameter, except for tFLASH, adds sequential latency to the wake time. Flash restoration happens in parallel to the other wake processes, and its wake time is normally absorbed by the other latencies. As an example, the wake time for a device in deep sleep mode with the PIOSC and PLL turned off and the flash and SRAM in low-power mode is calculated by Equation 5.
tFLASH does not contribute to this equation because the values of the other parameters are greater.
In sleep mode, the wake time due to a clock source is zero because the device uses the same clock configuration in run mode; thus, there is no latency involved with respect to the clocks.
Table 5-16 lists the wake-up times from sleep mode.
NO. | PARAMETER | MIN | TYP | MAX | UNIT | |
---|---|---|---|---|---|---|
D1 | tPIOSC | Time to restore PIOSC as system clock in sleep mode | N/A | µs | ||
D2 | tMOSC | Time to restore MOSC as system clock in sleep mode | N/A | µs | ||
D3 | tPLL | Time to restore PLL as system clock in sleep mode | N/A | µs | ||
D4 | tLDO | Time to restore LDO to 1.2 V in sleep mode | 39 | µs | ||
D5 | tFLASH | Time to restore flash to active state from low-power state in sleep mode | 96 | µs | ||
D6 | tSRAMLP | Time to restore SRAM to active state from low-power state in sleep mode | 15 | µs | ||
D7 | tSRAMSTBY | Time to restore SRAM to active state from standby state in sleep mode | 15 | µs |
Table 5-16 lists the wake-up times from deep sleep mode.
NO. | PARAMETER | MIN | TYP | MAX | UNIT | |
---|---|---|---|---|---|---|
D8 | tPIOSCDS | Time to restore PIOSC as system clock in deep sleep mode | 14 | deep-sleep clock cycles | ||
D9 | tMOSCDS | Time to restore MOSC as system clock in deep sleep mode | 18 | ms | ||
D10 | tPLLDS | Time to restore PLL as system clock in deep sleep mode | 1 cycle of deep sleep clock + 512 cycles of PLL reference clock (1) | clock cycles | ||
D11 | tLDODS | Time to restore LDO to 1.2 V in deep sleep mode | 39 | µs | ||
D12 | tFLASHLPDS | Time to restore flash to active state from low-power state | 96 | µs | ||
D13 | tSRAMLPDS | Time to restore SRAM to active state from low-power state | 15 | µs | ||
D14 | tSRAMSTBYDS | Time to restore SRAM to active state from standby state | 15 | µs |
The Hibernation module requires special system implementation considerations because it is intended to power down all other sections of its host device. See the Hibernation Module chapter of the MSP432E4 SimpleLink™ Microcontrollers Technical Reference Manual.
Table 5-18 lists the required characteristics of the Hibernation module battery.
PARAMETER | MIN | NOM | MAX | UNIT | ||
---|---|---|---|---|---|---|
VBAT | Battery supply voltage | 1.8 | 3.0 | 3.6 | V | |
VBATRMP | VBAT battery supply voltage ramp time | 0 | 0.7 | V/µs | ||
VLOWBAT | Low-battery detect voltage | VBATSEL = 0x0 | 1.8 | 1.9 | 2.0 | V |
VBATSEL = 0x1 | 2.0 | 2.1 | 2.2 | |||
VBATSEL = 0x2 | 2.2 | 2.3 | 2.4 | |||
VBATSEL = 0x3 | 2.4 | 2.5 | 2.6 |
Table 5-19 lists the timing characteristics of the HIB module.
NO. | PARAMETER | MIN | TYP | MAX | UNIT | |
---|---|---|---|---|---|---|
H1 | tWAKE | WAKE assertion time | 100 | ns | ||
H2 | tWAKE_TO_HIB | WAKE assert to HIB desassert (wake-up time) | 1 | HIB module clock period | ||
H3 | tVDD_RAMP | VDD ramp to 3.0 V | See (1) | µs | ||
H4 | tVDD_CODE | VDD at 3 V to internal POR deassert; first instruction executes | 500 | µs | ||
H5 | DCRTCCLK | Duty cycle for RTCCLK output signal, when using a 32.768‑kHz crystal | 40% | 60% | ||
Duty cycle for RTCCLK output signal, when using a 32.768‑kHz external single-ended (bypass) clock source | 30% | 70% |
Table 5-20 lists the characteristics of the HIB module tamper detection.
PARAMETER | MIN | TYP | MAX | UNIT | |
---|---|---|---|---|---|
RTPU | TMPRn pullup resistor | 3.5 | 4.4 | 5.2 | MΩ |
tSP | TMPRn pulse duration with short glitch filter | 62 | µs | ||
tLP | TMPRn pulse duration with long glitch filter | 94 | ms | ||
tNMIS | TMPRn assertion to NMI (short glitch filter) | 95 | µs | ||
tNMIL | TMPRn assertion to NMI (long glitch filter) | 94 | ms | ||
VIH | TMPRn high-level input voltage when operating from VBAT | VBAT × 0.8 | V |
Table 5-21 lists the characteristics of the flash memory.
PARAMETER | MIN | TYP | MAX | UNIT | ||
---|---|---|---|---|---|---|
PECYC | Number of program and erase cycles | 100000 | cycles | |||
tRET | Data retention with 100% power-on hours at TJ = 85°C | 20 | years | |||
tRET_EXTEMP | Data retention with 10% power-on hours at TJ = 125°C and 90% power-on hours at TJ = 100°C | 11 | years | |||
tPROG64 | Program time for double-word-aligned (64 bits) data | 30 | 100 | 300 | µs | |
tERASE | Page erase time | <1k cycles | 8 | 15 | ms | |
10k cycles | 15 | 40 | ||||
100k cycles | 75 | 500 | ||||
tME | Mass erase time | <1k cycles | 10 | 25 | ms | |
10k cycles | 20 | 70 | ||||
100k cycles | 300 | 2500 |
Table 5-22 lists the characteristics of the EEPROM.
PARAMETER | MIN | TYP | MAX | UNIT | ||
---|---|---|---|---|---|---|
EPECYC | Number of mass program and erase cycles of a single word | 500000 | cycles | |||
ETRET | Data retention with 100% power-on hours at TJ = 85°C | 20 | years | |||
ETRET_EXTEMP | Data retention with 10% power-on hours at TJ = 125°C and 90% power-on hours at TJ = 100°C | 11 | years | |||
ETPROG | Program time for 32 bits of data with memory space available | 110 | 600 | µs | ||
Program time for 32 bits of data in which a copy to the copy buffer is required, the copy buffer has space, and less than 10% of EEPROM endurance used | 30 | ms | ||||
Program time for 32 bits of data in which a copy to the copy buffer is required, the copy buffer has space, and more than 90% of EEPROM endurance used | 900 | |||||
Program time for 32 bits of data in which a copy of the copy buffer is required, the copy buffer requires an erase, and less than 10% of EEPROM endurance used | 60 | |||||
Program time for 32 bits of data a copy to the copy buffer is required, the copy buffer requires an erase, and more than 90% of EEPROM endurance used | 1800 | |||||
ETREAD | Read access time | 7 + 2EWS | 9 + 4EWS | system clock cycles | ||
ETME | Mass erase time | <1k cycles | 8 | 15 | ms | |
10k cycles | 15 | 40 | ||||
100k cycles | 75 | 500 |
NOTE
All GPIO signals are 3.3-V tolerant, except for PB1 (USB0VBUS) which is 5-V tolerant. See the General-Purpose Input/Outputs (GPIOs) chapter of the MSP432E4 SimpleLink™ Microcontrollers Technical Reference Manual for more information on GPIO configuration.
Two types of pads are provided on the device:
NOTE
Port pins PL6 and PL7 operate as fast GPIO pads, but have 4-mA drive capability only. GPIO register controls for drive strength, slew rate, and open drain have no effect on these pins. The following registers have no effect: GPIODR2R, GPIODR4R, GPIODR8R, GPIODR12R, GPIOSLR, and GPIOODR.
NOTE
Port pins PM[7:4] operate as fast GPIO pads but support only 2-, 4-, 6-, and 8-mA drive capability. All standard GPIO register controls, except for the GPIODR12R register, apply to these port pins.
Table 5-23 lists the characteristics of the fast GPIOs.
PARAMETER | MIN | TYP | MAX | UNIT | ||
---|---|---|---|---|---|---|
CLGPIO | Capacitive loading for measurements given in this table (5) | 50 | pF | |||
RGPIOPU | Fast GPIO internal pullup resistor (6) | 12.1 | 16.0 | 20.2 | kΩ | |
RGPIOPU4MA | Fast GPIO PL6 and PL7 (4 mA only) pullup resistor | 25 | 40 | kΩ | ||
RGPIOPD | Fast GPIO internal pulldown resistor (6) | 13.0 | 20.5 | 35.5 | kΩ | |
RGPIOPD4MA | Fast GPIO PL6 and PL7 (4 mA only) pulldown resistor | 10 | 14.3 | 17 | kΩ | |
ILKG+ | Fast GPIO input leakage current, 0 V ≤ VIN ≤ VDD GPIO pins(7) | 400 | nA | |||
Fast GPIO input leakage current, 0 V < VIN ≤ VDD, fast GPIO pins configured as ADC or analog comparator inputs | 400 | |||||
IINJ- | DC injection current, VIN ≤ 0 V | 60 | µA | |||
IMAXINJ- | Maximum negative injection if not voltage protected (4) | –0.5 | mA | |||
tGPIOR | Fast GPIO rise time(8) | 2-mA drive | 7.85 | 11.73 | ns | |
4-mA drive | 4.15 | 6.35 | ||||
8-mA drive | 2.33 | 3.73 | ||||
8-mA drive with slew rate control | 3.77 | 5.76 | ||||
10-mA drive | 1.98 | 3.22 | ||||
12-mA drive | 1.75 | 2.9 | ||||
tGPIOF | Fast GPIO fall time (9) | 2-mA drive | 10.3 | 16.5 | ns | |
4-mA drive | 5.15 | 8.29 | ||||
8-mA drive | 2.58 | 4.16 | ||||
8-mA drive with slew rate control | 3.54 | 5.55 | ||||
10-mA drive | 2.07 | 3.34 | ||||
12-mA drive | 1.73 | 2.78 |
Table 5-24 lists the characteristics of the slow GPIOs.
PARAMETER | MIN | TYP | MAX | UNIT | |
---|---|---|---|---|---|
CLGPIO | Capacitive loading for measurements given in this table(4) | 50 | pF | ||
RGPIOPU | Slow GPIO internal pullup resistor | 13.8 | 20.0 | 31.4 | kΩ |
RGPIOPD | Slow GPIO internal pulldown resistor | 13.0 | 20.5 | 35.5 | kΩ |
ILKG+ | Slow GPIO input leakage current, 0 V ≤ VIN ≤ VDD, GPIO pins(5) | 3.25 | nA | ||
Slow GPIO input leakage current, 0 V < VIN ≤ VDD, GPIO pins configured as ADC or analog comparator inputs | 3.25 | ||||
IINJ- | DC injection current, VIN ≤ 0 V | 3.42 | µA | ||
tGPIOR | Slow GPIO rise time, 2-mA drive(6) | 19.3 | 29.8 | ns | |
tGPIOF | Slow GPIO fall time, 2-mA drive(7) | 12.8 | 21.1 | ns |
CAUTION
All device I/Os pins, except for PB1, are NOT 5-V tolerant; voltages in excess of the limits in Section 5.4 can permanently damage the device. PB1 is used for the USB0VBUS signal, which requires a 5-V input.
The Hibernate WAKE pin uses ESD protection, similar to the one shown in Figure 5-14. This ESD protection prevents a direct path between this pad and any power supply rails in the device. The WAKE pad input voltage should be kept inside the maximum ratings specified in Section 5.1 to ensure current leakage and current injections are within acceptable range. Table 5-25 lists current leakages and current injection for these pins.
PARAMETER | MIN | TYP | MAX | UNIT | |
---|---|---|---|---|---|
ILKG+ | Positive I/O leakage for VDD ≤ VIN ≤ VBAT + 0.3 V | 300 | nA | ||
ILKG- | Negative I/O leakage for –0.3 V ≤ VIN ≤ 0 V(3) | 43.3 | µA | ||
IINJ+ | Maximum positive injection if not voltage protected | 2 | mA | ||
IINJ- | Maximum negative injection if not voltage protected (4) | –0.5 | mA |
Most nonpower I/Os (with the exception of the I/O pad for Hibernate WAKE input) have ESD protection as shown in Figure 5-15.
These I/Os have an ESD clamp to ground and a diode connection to the corresponding power supply rail. To prevent potential damage to the device, follow the specifications in Table 5-26 for the voltage and current of these I/Os. In addition, comply with that the ADC external reference specifications in Table 5-33 to prevent gain error.
PARAMETER | MIN | TYP | MAX | UNIT | |
---|---|---|---|---|---|
VIO | I/O pad voltage limits if voltage protected | –0.3 | VDD | VDD + 0.3 | V |
ILKG+ | Positive I/O leakage for VDD ≤ VIN ≤VIO (4) | 400 | nA | ||
ILKG- | Negative I/O leakage for VIO MIN ≤ VIN ≤ 0V (4) | 60 | µA | ||
IINJ+ | Maximum positive injection if not voltage protected(5) | 2 | mA | ||
IINJ- | Maximum negative injection if not voltage protected(5) | –0.5 | mA |
Table 5-27 lists the load conditions used to characterize the EPI interface.
SIGNALS | LOAD VALUE (CL) |
---|---|
EPI0S[35:0] SDRAM interface | 30 pF |
EPI0S[35:0] General-Purpose interface | |
EPI0S[35:0] Host-Bus interface | |
EPI0S[35:0] PSRAM interface | 40 pF |
When the EPI module is in SDRAM mode, EPI CLK (EPI0S31) must be configured to 12 mA. The EPI data bus can be configured to 8 mA. Table 5-28 lists the rise and fall times in SDRAM mode.
PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |
---|---|---|---|---|---|---|
tSDRAMR | EPI rise time (from 20% to 80% of VDD) | 12-mA drive, CL = 30 pF | 2 | 3 | ns | |
tSDRAMF | EPI fall time (from 80% to 20% of VDD) | 12-mA drive, CL = 30 pF | 2 | 3 | ns |
Table 5-29 lists the switching characteristics of the SDRAM interface.
NO. | PARAMETER | MIN | TYP | MAX | UNIT | |
---|---|---|---|---|---|---|
E1 | tCK | SDRAM clock period | 16.67 | ns | ||
E2 | tCH | SDRAM clock high time | 8.33 | ns | ||
E3 | tCL | SDRAM clock low time | 8.33 | ns | ||
E4 | tCOV | CLK to output valid | 4 | ns | ||
E5 | tCOI | CLK to output invalid | 4 | ns | ||
E6 | tCOT | CLK to output tristate | 4 | ns | ||
E7 | tS | Input set up to CLK | 8.5 | ns | ||
E8 | tH | CLK to input hold | 0 | ns | ||
E9 | tPU | Power-up time | 100 | µs | ||
E10 | tRP | Precharge all banks | 20 | ns | ||
E11 | tRFC | Auto refresh | 66 | ns | ||
E12 | tMRD | Program mode register | 2 | EPI CLK |
Table 5-30 lists the characteristics of the Host-Bus 8 and Host-Bus 16 interface.
NO. | PARAMETER | MIN | TYP | MAX | UNIT | |
---|---|---|---|---|---|---|
E14 | tISU | Read data set up time | 10 | ns | ||
E15 | tIH | Read data hold time | 0 | ns | ||
E16 | tDV | WRn to write data valid | 3.6 | ns | ||
E17 | tDI | Data hold from WRn invalid | 1 | EPI clock cycles | ||
E18 | tOV | ALE/CSn to output valid | 4 | ns | ||
E19 | tOINV | CSn to output invalid | 4 | ns | ||
E20 | tSTLOW | WRn / RDn strobe duration low | 1 | EPI clock cycles | ||
E21 | tALEHIGH | ALE duration high | 1 | EPI clock cycles | ||
E22 | tCSLOW | CSn duration low | 2 | EPI clock cycles | ||
E23 | tALEST | ALE rising to WRn / RDn strobe falling | 2 | EPI clock cycles | ||
E24 | tALEADD | ALE falling to Address high impedance | 1 | EPI clock cycles |
Table 5-31 lists the switching characteristics of the general-purpose interface.
NO. | PARAMETER | MIN | TYP | MAX | UNIT | |
---|---|---|---|---|---|---|
E25 | tCK | General-purpose clock period | 16.67 | ns | ||
E26 | tCH | General-purpose clock high time | 8.33 | ns | ||
E27 | tCL | General-purpose clock low time | 8.33 | ns | ||
E28 | tISU | Input signal set up time to rising clock edge | 8.50 | ns | ||
E29 | tIH | Input signal hold time from rising clock edge | 0 | ns | ||
E30 | tDV | Falling clock edge to output valid | 4 | ns | ||
E31 | tDI | Falling clock edge to output invalid | 4 | ns |
NOTE:
This figure shows accesses when the FRM50 bit is clear, the FRMCNT field is 0x0, and the WR2CYC bit is clear.Table 5-32 lists the switching characteristics of the PSRAM interface.
NO. | PARAMETER | MIN | TYP | MAX | UNIT | |
---|---|---|---|---|---|---|
E33 | tEPICLK | EPI_CLK period | 20 | ns | ||
E34 | tRTFT | EPI_CLK rise or fall time | 1.8 | ns | ||
E35 | tOV | Falling EPI_CLK to address/write data or control output valid (1) | 4.5 | 20 | ns | |
E36 | tHT | Falling EPI_CLK to address/write data or control hold time (1) | 2 | ns | ||
E37 | tSUP | Read data setup time from EPI_CLK rising | 9 | ns | ||
E38 | tDH | Read data output hold from EPI_CLK rising | 0 | ns | ||
E39 | tIRV | iRDY setup time | 9 | ns | ||
E40 | tIRH | iRDY hold time | 9 | ns |
Table 5-33 lists the electrical characteristics for the ADC at 1 Msps.
PARAMETER | MIN | TYP | MAX | UNIT | |
---|---|---|---|---|---|
Power supply requirements | |||||
VDDA | ADC supply voltage | 2.97 | 3.3 | 3.63 | V |
GNDA | ADC ground voltage | 0 | V | ||
VDDA and GNDA voltage reference | |||||
CREF | Voltage reference decoupling capacitance | 1.0 // 0.01 (2) | µF | ||
External voltage reference input | |||||
VREFA+ | Positive external voltage reference for ADC, when VREF field in the ADCCTL register is 0x1(3) | 2.4 | VDDA | VDDA | V |
VREFA- | Negative external voltage reference for ADC, when VREF field in the ADCCTL register is 0x1(3) | GNDA | GNDA | 0.3 | V |
IVREF | Current on VREF+ input, using external VREF+ = 3.3 V | 330.5 | 440 | µA | |
ILVREF | DC leakage current on VREF+ input when external VREF disabled | 2.0 | µA | ||
CREF | External reference decoupling capacitance (3) | 1.0 // 0.01 (2) | µF | ||
Analog input | |||||
VADCIN | Single-ended, full-scale analog input voltage, internal reference (4) (5) | 0 | VDDA | V | |
Differential, full-scale analog input voltage, internal reference (4)(6) | –VDDA | VVDDA | |||
Single-ended, full-scale analog input voltage, external reference (3) (5) | VREFA- | VREFA+ | |||
Differential, full-scale analog input voltage, external reference(3)(7) | –(VREFA+ – VREFA-) | VREFA+ – VREFA- | |||
VINCM | Input common-mode voltage, differential mode(8) | [(VREFA+ + VREFA-) / 2] ±0.025 | V | ||
IL | ADC input leakage current(9) | 2.0 | µA | ||
RADC | ADC equivalent input resistance (9) | 2.5 | kΩ | ||
CADC | ADC equivalent input capacitance (9) | 10 | pF | ||
RS | Analog source resistance (9) | 500 | Ω | ||
Sampling dynamics | |||||
fADC | ADC conversion clock frequency(10) | 16 | MHz | ||
fCONV | ADC conversion rate |
|
1 | Msps | |
tS | ADC sample time | 250 | ns | ||
tC | ADC conversion time (11) | 1 | µs | ||
tLT | Latency from trigger to start of conversion | 2 | ADC clock cycles | ||
System performance when using external reference (12) (13) | |||||
N | Resolution |
|
12 | bits | |
INL | Integral nonlinearity error, over full input range | ±1.5 | ±3.0 | LSB | |
DNL | Differential nonlinearity error, over full input range | ±0.8 | +2.0/–1.0 (14) | LSB | |
EO | Offset error | ±1.0 | ±3.0 | LSB | |
EG | Gain error (15) | ±2.0 | ±3.0 | LSB | |
ET | Total unadjusted error, over full input range (16) | ±2.5 | ±4.0 | LSB | |
System performance when using internal reference | |||||
N | Resolution |
|
12 | bits | |
INL | Integral nonlinearity error, over full input range | ±1.5 | ±3.0 | LSB | |
DNL | Differential nonlinearity error, over full input range | ±0.8 | +2.0/–1.0 (14) | LSB | |
EO | Offset error | ±5.0 | ±15.0 | LSB | |
EG | Gain error (15) | ±10.0 | ±30.0 | LSB | |
ET | Total unadjusted error, over full input range (16) | ±10.0 | ±30.0 | LSB | |
Dynamic characteristics (12) (17) | |||||
SNRD | Signal-to-noise-ratio, Differential input, VADCIN: –20 dB FS, 1 kHz (18) | 70 | 72 | dB | |
SDRD | Signal-to-distortion ratio, Differential input, VADCIN: –3 dB FS, 1 kHz (18) (19) (20) | 72 | 75 | dB | |
SNDRD | Signal-to-Noise+Distortion ratio, Differential input, VADCIN: –3 dB FS, 1 kHz (18) (21) (22) | 68 | 70 | dB | |
SNRS | Signal-to-noise-ratio, Single-ended input, VADCIN: –20 dB FS, 1 kHz (23) | 60 | 65 | dB | |
SDRS | Signal-to-distortion ratio, Single-ended input, VADCIN: –3 dB FS, 1 kHz (19) (20) | 70 | 72 | dB | |
SNDRS | Signal-to-Noise+Distortion ratio, Single-ended input, VADCIN: –3 dB FS, 1 kHz (23) (21) (22) | 60 | 63 | dB | |
Temperature sensor | |||||
VTSENS | Temperature sensor voltage, junction temperature 25°C | 1.633 | V | ||
STSENS | Temperature sensor slope at: –40°C to 105°C ambient (extended temperature part) |
–13.3 | mV/°C | ||
ETSENS | Temperature sensor accuracy (24) at: –40°C to 105°C ambient (extended temperature part) |
±5 | °C |
Table 5-34 lists the electrical characteristics for the ADC at 2 Msps.
PARAMETER | MIN | TYP | MAX | UNIT | |
---|---|---|---|---|---|
Power supply requirements | |||||
VDDA | ADC supply voltage | 2.97 | 3.3 | 3.63 | V |
GNDA | ADC ground voltage | 0 | V | ||
VDDA and GNDA voltage reference | |||||
CREF | Voltage reference decoupling capacitance | 1.0 // 0.01 (2) | µF | ||
External voltage reference input | |||||
VREFA+ | Positive external voltage reference for ADC, when VREF field in the ADCCTL register is 0x1(3) | 2.4 | VDDA | VDDA | V |
VREFA- | Negative external voltage reference for ADC, when VREF field in the ADCCTL register is 0x1 (3) | GNDA | GNDA | 0.3 | V |
IVREF | Current on VREF+ input, using external VREF+ = 3.3 V | 330.5 | 440 | µA | |
ILVREF | DC leakage current on VREF+ input when external VREF disabled | 2.0 | µA | ||
CREF | External reference decoupling capacitance (3) | 1.0 // 0.01 (2) | µF | ||
Analog input | |||||
VADCIN | Single-ended, full-scale analog input voltage, internal reference(4)(5) | 0 | VDDA | V | |
Differential, full-scale analog input voltage, internal reference (4)(6) | –VDDA | VVDDA | |||
Single-ended, full-scale analog input voltage, external reference (3) (5) | VREFA- | VREFA+ | |||
Differential, full-scale analog input voltage, external reference (3)(7) | –(VREFA+ – VREFA-) | VREFA+ – VREFA- | |||
VINCM | Input common-mode voltage, differential mode (8) | [(VREFA+ + VREFA-) / 2] ±0.025 | V | ||
IL | ADC input leakage current(9) | 2.0 | µA | ||
RADC | ADC equivalent input resistance (9) | 2.5 | kΩ | ||
CADC | ADC equivalent input capacitance (9) | 10 | pF | ||
RS | Analog source resistance (9) | 250 | Ω | ||
Sampling dynamics | |||||
fADC | ADC conversion clock frequency(10) | 32 | MHz | ||
fCONV | ADC conversion rate | 2 | Msps | ||
tS | ADC sample time | 125 | ns | ||
tC | ADC conversion time (11) | 0.5 | µs | ||
tLT | Latency from trigger to start of conversion | 2 | ADC clock cycles | ||
System performance when using external reference (12) (13) | |||||
N | Resolution |
|
12 | bits | |
INL | Integral nonlinearity error, over full input range | ±1.5 | ±3.0 | LSB | |
DNL | Differential nonlinearity error, over full input range | ±0.8 | +2.0/–1.0 (14) | LSB | |
EO | Offset error | ±1.0 | ±3.0 | LSB | |
EG | Gain error (15) | ±2.0 | ±3.0 | LSB | |
ET | Total unadjusted error, over full input range (16) | ±2.5 | ±4.0 | LSB | |
System performance when using internal reference | |||||
N | Resolution |
|
12 | bits | |
INL | Integral nonlinearity error, over full input range | ±1.5 | ±3.0 | LSB | |
DNL | Differential nonlinearity error, over full input range | ±0.8 | +2.0/–1.0 (14) | LSB | |
EO | Offset error | ±5.0 | ±15.0 | LSB | |
EG | Gain error (15) | ±10.0 | ±30.0 | LSB | |
ET | Total unadjusted error, over full input range (16) | ±10.0 | ±30.0 | LSB | |
Dynamic characteristics (17) (18) | |||||
SNRD | Signal-to-noise-ratio, differential input, VADCIN: –20 dB FS, 1 kHz (19) | 68 | 72 | dB | |
SDRD | Signal-to-distortion ratio, differential input, VADCIN: –3 dB FS, 1 kHz (19) (20) (21) | 70 | 75 | dB | |
SNDRD | Signal-to-noise+distortion ratio, differential input, VADCIN: –3 dB FS, 1 kHz (19) (22) (23) | 65 | 70 | dB | |
SNRS | Signal-to-noise-ratio, single-ended input, VADCIN: –20 dB FS, 1 kHz (24) | 58 | 65 | dB | |
SDRS | Signal-to-distortion ratio, single-ended input, VADCIN: –3 dB FS, 1 kHz (20) (21) | 68 | 72 | dB | |
SNDRS | Signal-to-noise+distortion ratio, single-ended input, VADCIN: –3 dB FS, 1 kHz (24) (22) (23) | 58 | 63 | dB |
NO. | PARAMETER | MIN | TYP | MAX | UNIT | ||
---|---|---|---|---|---|---|---|
S1 | tCLK_PER | SSIClk cycle time | As master(1) | 16.67 | ns | ||
As slave(2) | 100 | ||||||
S2 | tCLK_HIGH | SSIClk high time | As master | 8.33 | ns | ||
As slave | 50 | ||||||
S3 | tCLK_LOW | SSIClk low time | As master | 8.33 | ns | ||
As slave | 50 | ||||||
S4 | tCLKR | SSIClk rise time(3) | 1.25 | ns | |||
S5 | tCLKF | SSIClk fall time (3) | 1.25 | ns | |||
S6 | tTXDMOV | Master mode: master Tx data output (to slave) valid time from edge of SSIClk | 4.00 | ns | |||
S7 | tTXDMOH | Master mode: master Tx data output (to slave) hold time after next SSIClk | 0.60 | ns | |||
S8 | tRXDMS | Master mode: master Rx data In (from slave) setup time | 7.89 | ns | |||
S9 | tRXDMH | Master mode: master Rx data In (from slave) hold time | 0 | ns | |||
S10 | tTXDSOV | Slave mode: master Tx data output (to master) valid time from edge of SSIClk | 47.60(4) | ns | |||
S11 | tTXDSOH | Slave mode: slave Tx data output (to master) hold time from next SSIClk | 37.4(5) | ns | |||
S13 | tRXDSSU | Slave mode: Rx data in (from master) setup time | 0 | ns | |||
S14 | tRXDSH | Slave mode: Rx data in (from master) hold time | 37.03(6) | ns |
Table 5-36 lists the characteristics for Bi-SSI and Quad-SSI.
NO. | PARAMETER | MIN | TYP | MAX | UNIT | |
---|---|---|---|---|---|---|
S15 | tCLK_PER | SSIClk cycle time, as master (2) | 16.67 | ns | ||
S16 | tCLK_HIGH | SSIClk high time, as master | 8.33 | ns | ||
S17 | tCLK_LOW | SSIClk low time, as master | 8.33 | ns | ||
S18 | tCLKR | SSIClk rise time (3) | 1.25 | ns | ||
S19 | tCLKF | SSIClk fall time (3) | 1.25 | ns | ||
S20 | tTXDMOV | Master mode: master SSInXDATn data output (to slave) valid time from edge of SSIClk | 4.04 | ns | ||
S21 | tTXDMOH | Master mode: master SSInXDATn data output (to slave) hold time after next SSIClk | 0.60 | ns | ||
S22 | tRXDMS | Master mode: master SSInXDATn data in (from slave) setup time | 5.78 | ns | ||
S23 | tRXDMH | Master mode: master SSInXDATn data in (from slave) hold time | 0 | ns |
Table 5-37 lists the characteristics for the I2C interface.
NO. | PARAMETER | MIN | TYP | MAX | UNIT | ||
---|---|---|---|---|---|---|---|
I1(1) | tSCH | Start condition hold time | 36 | system clock cycles | |||
I2 (1) | tLP | Clock low period | 36 | system clock cycles | |||
I3 (2) | tSRT | I2CSCL and I2CSDA rise time (VIL = 0.5 V to V IH = 2.4 V) | See (2) | ns | |||
I4 | tDH | Data hold time | Slave | 2 | system clock cycles | ||
Master | 7 | ||||||
I5 (3) | tSFT | I2CSCL and I2CSDA fall time (VIH = 2.4 V to V IL = 0.5 V) | 9 | 10 | ns | ||
I6 (1) | tHT | Clock high time | 24 | system clock cycles | |||
I7 | tDS | Data setup time | 18 | system clock cycles | |||
I8 (1) | tSCSR | Start condition setup time (for repeated start condition only) | 36 | system clock cycles | |||
I9 (1) | tSCS | Stop condition setup time | 24 | system clock cycles | |||
I10 | tDV | Data valid | Slave | 2 | system clock cycles | ||
Master | (6 × (1 + TPR)) + 1 | system clock cycles |
The parameters listed in Table 5-38, with the exception of RBIAS, apply to transmit pins of the Ethernet PHY, which are generally the EN0TXOP and EN0TXON signals during standard operation but can also be the EN0RXIN and EN0RXIP signals if Auto-MDIX is enabled.
PARAMETER | MIN | TYP | MAX | UNIT | |
---|---|---|---|---|---|
RBIAS | Value of the pulldown resistor on the RBIAS pin | 4.82 | 4.87 | 4.92 | kΩ |
VTPTD_100 | 100M transmit voltage | 0.95 | 1 | 1.05 | V |
VTPTDSYM | 100M transmit voltage symmetry | –2% | 2% | ||
VOVRSHT | Output overshoot | 5% | |||
VTPTD_10 | 10M transmit voltage | 2.2 | 2.5 | 2.8 | V |
VTH1 | 10Base-T Receive threshold | 200 | mV |
Table 5-39 lists the specifications of the MOSC 25-MHz crystal.
NO. | PARAMETER | MIN | TYP | MAX | UNIT | |
---|---|---|---|---|---|---|
N1 | fMOSC25 | Frequency | 25 | MHz | ||
fTOL | Frequency tolerance at operational temperature | 0 | ±50 | ppm | ||
fSTA | Frequency stability at 1-year aging | ±5 | ppm |
Table 5-40 lists the specifications of the single-ended 25-MHz oscillator.
NO. | PARAMETER | MIN | TYP | MAX | UNIT | ||
---|---|---|---|---|---|---|---|
N4 | fOSC | Frequency | 25 | MHz | |||
fTOL | Frequency tolerance at operational temperature | 0 | ±50 | ppm | |||
tSTA | Frequency stability at 1-year aging | ±50 | ppm | ||||
N5 | tRF | Frequency rise and fall time | 1 | ns | |||
tJ | Jitter | Cycle to cycle | 50 | ps | |||
Over 10 ms | 1 | ns | |||||
DC | Duty cycle | 40% | 60% |
Table 5-41 lists the specifications of the EN0RREF_CLK 50-MHz oscillator.
NO. | PARAMETER | MIN | TYP | MAX | UNIT | ||
---|---|---|---|---|---|---|---|
N8 | fOSC | Frequency | 50 | MHz | |||
fTOL | Frequency tolerance at operational temperature | 0 | ±50 | ppm | |||
tSTA | Frequency stability at 1-year aging | ±50 | ppm | ||||
N9 | tRF | Frequency rise and fall time | 1.5 | ns | |||
tJ | Jitter | Cycle to cycle | 50 | ps | |||
Over 10 ms | 1 | ns | |||||
DC | Duty cycle | 40% | 60% |
Table 5-42 lists the timing characterists of the enable and reset.
NO. | PARAMETER | MIN | TYP | MAX | UNIT | |
---|---|---|---|---|---|---|
N16 | tEN | Time from the System Control enable of the PHY to energy on the PMD output pin (1) (2) | 45 | µs | ||
N17 | tSWRST | Time from software reset of the PHY to energy on the PMD output pin | 110 | ns |
Table 5-43 lists the MII serial management timing.
NO. | PARAMETER | MIN | TYP | MAX | UNIT | |
---|---|---|---|---|---|---|
N20 | fMDC | EN0MDC frequency | 2.5 | MHz | ||
N21 | tMDIO_DLY | EN0MDC to EN0MDIO (output) delay time | 0 | See (1) | ns | |
N22 | tMDIO_SU | EN0MDIO (input) to EN0MDC setup time | 10 | ns | ||
N23 | tMDIO_HLD | EN0MDIO (input) to EN0MDC hold time | 10 | ns |
Table 5-44 lists the 100-Mbps MII transmit timing.
NO. | PARAMETER | MIN | TYP | MAX | UNIT | |
---|---|---|---|---|---|---|
N26 | tTXCK_HI | EN0TXCK high time | 16 | 20 | 24 | ns |
N27 | tTXCK_LO | EN0TXCK low time | 16 | 20 | 24 | ns |
N28 | tTX_DLY | EN0TXCK to EN0TXDn, EN0TXEN delay | 0 | 25 | ns |
Table 5-45 lists the 100-Mbps MII receive timing.
NO. | PARAMETER | MIN | TYP | MAX | UNIT | |
---|---|---|---|---|---|---|
N30 | tRXCK_HI | EN0RXCK high time | 16 | 20 | 24 | ns |
N31 | tRXCK_LO | EN0RXCK low time | 16 | 20 | 24 | ns |
N32 | tRXCK_SU | EN0RXDn, EN0RXDV, EN0RXER data setup to EN0RXCK | 10 | ns | ||
N33 | tRXCK_HLD | EN0RXDn, EN0RXDV, EN0RXER data hold to EN0RXCK | 0 | ns |
Table 5-46 lists the 100Base-TX transmit timing.
NO. | PARAMETER | MIN | TYP | MAX | UNIT | |
---|---|---|---|---|---|---|
N38 | tRF | 100-Mbps PMD output pair tR and tF (1) | 3 | 4 | 5 | ns |
tRF_MM | 100-Mbps tR and tF symmetry (2) (3) | 500 | ps | |||
N39 | tRF_JTTR | 100-Mbps PMD output pair transmit jitter | 1.4 | ns |
Table 5-47 lists the 10-Mbps MII transmit timing.
NO. | PARAMETER | MIN | TYP | MAX | UNIT | |
---|---|---|---|---|---|---|
N45 | tTXCK_HI | EN0TXCK high time | 190 | 200 | 210 | ns |
N46 | tTXCK_LO | EN0TXCK low time | 190 | 200 | 210 | ns |
N47 | tTX_DLY | EN0TXCK to EN0TXDn, EN0TXEN delay | 0 | 25 | ns |
Table 5-48 lists the 10-Mbps MII receive timing.
NO. | PARAMETER | MIN | TYP | MAX | UNIT | |
---|---|---|---|---|---|---|
N50 | tRXCK_HI | EN0RXCK high time | 160 | 200 | 240 | ns |
N51 | tRXCK_LO | EN0RXCK low time | 160 | 200 | 240 | ns |
N52 | tRX_SU | EN0RXCK to EN0RXDn, EN0RXDV, EN0RXER setup | 100 | ns | ||
N53 | tRX_HLD | EN0RXCK to EN0RXDn, EN0RXDV, EN0RXER hold | 100 | ns |
Table 5-49 lists the 10Base-T normal link pulse timing.
NO. | PARAMETER | MIN | TYP | MAX | UNIT | |
---|---|---|---|---|---|---|
N69 | tLP_PER | Link pulse period | 76 | ms | ||
N70 | tLP_WID | Link pulse width | 100 | µs |
Table 5-50 lists the Auto-Negotiation FLP timing.
NO. | PARAMETER | MIN | TYP | MAX | UNIT | |
---|---|---|---|---|---|---|
N72 | tCLKP | Clock pulse to clock pulse period | 125 | µs | ||
N73 | tCLKDP | Clock pulse to data pulse period | 62 | µs | ||
N74 | tPUL | Clock, data pulse width | 110 | ns | ||
N75 | tBRSTP | FLP burst to flp burst period | 16 | ms | ||
N76 | tBRSTW | Burst width | 2 | ms |
Table 5-51 lists the 100Base-TX signal detect timing.
NO. | PARAMETER | MIN | TYP | MAX | UNIT | |
---|---|---|---|---|---|---|
N79 | tON | SD internal turnon time | 100 | µs | ||
N80 | tOFF | Internal turnoff time | 200 | µs |
Table 5-52 lists the RMII transmit timing.
NO. | PARAMETER | MIN | TYP | MAX | UNIT | |
---|---|---|---|---|---|---|
N86 | fREFCLK | EN0RREF_CLK frequency | 50 | MHz | ||
DCREFCLK | EN0RREF_CLK duty cycle | 40% | 60% | |||
N87 | tTX_DLY | EN0RREF_CLK to EN0TXDn, EN0TXEN delay | 2 | 14 | ns |
Table 5-53 lists the RMII receive timing.
NO. | PARAMETER | MIN | TYP | MAX | UNIT | |
---|---|---|---|---|---|---|
N91 | fREFCLK | EN0RREF_CLK frequency | 50 | MHz | ||
DCREFCLK | EN0RREF_CLK duty cycle | 40% | 60% | |||
N92 | tRX_SU | EN0RXDn, EN0RXEN, EN0CRS setup time to EN0RREF_CLK | 4 | ns | ||
N93 | tRX_HLD | EN0RXDn, EN0RXEN, EN0CRS hold time from EN0RREF_CLK | 2 | ns |
The USB controller electrical specifications are compliant with the Universal Serial Bus Specification Rev 2.0 (full-speed and low-speed support) and the On-The-Go Supplement to the USB 2.0 Specification Rev 1.0. Some components of the USB system are integrated within the microcontroller and specific to the microcontroller design.
NOTE
GPIO pin PB1, which can be configured as the USB0VBUS signal, is the only pin that is 5-V tolerant on the device.
Table 5-54 lists the timing characteristics of the ULPI interface.
NO. | PARAMETER | MIN | TYP | MAX | UNIT | |
---|---|---|---|---|---|---|
Timings with respect to external clock source input to USB0CLK | ||||||
U1 | tSUC | Setup time (control in) USB0DIR, USB0NXT | 4.8 | ns | ||
U2 | tSUD | Setup time (data in) USB0Dn | 3.5 | ns | ||
U3 | tHTC | Hold time (control in) USB0DIR, USB0NXT | 0 | ns | ||
U4 | tHTD | Hold time (data in) USB0Dn | 0 | ns | ||
U5 | tODC | Output delay (control out) USB0STP | 3.7 | 9.5 | ns | |
U6 | tODD | Output delay (data out) USB0Dn | 3.7 | 9.5 | ns | |
Timings with USB0CLK as clock output | ||||||
U1 | tSUC | Setup time (control in) USB0DIR, USB0NXT | 6.0 | ns | ||
U2 | tSUD | Setup time (data in) USB0Dn | 4.6 | ns | ||
U3 | tHTC | Hold time (control in) USB0DIR, USB0NXT | 0 | ns | ||
U4 | tHTD | Hold time (data in) USB0Dn | 0 | ns | ||
U5 | tODC | Output delay (control out) USB0STP | 4.0 | 10.6 | ns | |
U6 | tODD | Output delay (data out) USB0Dn | 4.0 | 10.6 | ns |
The LCD controller consists of two independent controllers, the raster controller and the LCD interface display driver (LIDD) controller. Each controller operates independently from the other and only one of them is active at any given time.
The maximum resolution for the LCD controller is 2048 × 2048 pixels. The maximum frame rate is determined by the image size in combination with the pixel clock rate.
The LCD signals must be configured with a drive strength of 8 mA with slew rate control.
Table 5-55 lists the load capacitance limits of the LCD controller.
PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |
---|---|---|---|---|---|---|
CLOAD | LCD output load capacitance | LIDD mode | 5 | 50 | pF | |
Raster mode | 3 | 30 | pF |
NOTE
A 25-pF load is assumed for LCD timings.
In LIDD mode, the LIDDCS0CFG register allows for full programmability of the read and write strobes, data and enables. In the LCDCS0CFG register, the following parameters can be configured with respect to the internal MCLK:
Essentially, output valid/hold and input setup/hold times in LIDD mode are programmed by these fields. In addition, the inherent clock delay from the internal MCLK transition to the signal output adds or subtracts to these programmed times as indicated in the following tables and figures.
Table 5-56 lists the LCD switching characteristics.
NO. | PARAMETER | MIN | TYP | MAX | UNIT | |
---|---|---|---|---|---|---|
L1 | tCYC | Internal MCLK cycle time | 50 | ns | ||
L2 | tCYCH | Internal MCLK pulse duration high | 25 | ns | ||
L3 | tCYCL | Internal MCLK pulse duration low | 25 | ns | ||
L4 | tDLYVAL | Delay time from internal MCLK high to LCDDATA[15:0] valid (write) | 11.6 | ns | ||
L5 | tDLYINV | Delay time from internal MCLK high to LCDDATA[15:0] invalid (write) | 4.0 | ns | ||
L6 | tDLYHAC | Delay time, internal MCLK high to LCDAC | 11.19 | ns | ||
L7 | tTRANAC | LCDAC transition time | 5.9 | ns | ||
L8 | tDLYFP | Delay time from internal MCLK high to LCDFP | 10.5 | ns | ||
L9 | tTRANFP | LCDFP transition time | 5.9 | ns | ||
L10 | tDLYLP | Delay time internal MCLK high to LCDLP | 11.0 | ns | ||
L11 | tTRANLP | LCDLP transition time | 5.9 | ns | ||
L12 | tDLYCP | Delay time of internal MCLK to LCDCP | 8.4 | ns | ||
L13 | tTRANCP | LCDCP transition time | 5.9 | ns | ||
L14 | tDLYDZ | Delay time from internal MCLK high to LCDDATA[15:0] Hi-Z (read cycle) | 11.7 | ns | ||
L15 | tDLYDD | Delay time from internal MCLK high to LCDDATA[15:0] active (read cycle) | 11.0 | ns | ||
L19 | tTRANMCLK | Internal MCLK transition time | 5.9 | ns | ||
L20 | tTRANPKT | LCDDATA transition time from one data packet to next | 5.9 | ns |
Table 5-57 lists the timing requirements for LCDDATA in LIDD mode.
NO. | PARAMETER | MIN | TYP | MAX | UNIT | |
---|---|---|---|---|---|---|
L16 | tSTDATA | LCDDATA[15:0] setup time (read) before internal MCLK high | 20 | ns | ||
L17 | tHTDATA | LCDDATA[15:0] hold time (read) after internal MCLK high | 0 | ns | ||
L18 | tTRANRDATA | LCDDATA read transition time | 5.9 | ns |
Hitachi mode is an asynchronous mode that does not use an external LCDMCLK and allows for full programmability of the read and write strobes, data, and enables through the LIDDCS0CFG register. In addition to the parameter delays configured in the LIDDCS0CFG register, the delay times in the following figures that are from the internal MCLK to the signal output must be added to the programmed delays for full timing information. All of the parameter values associated with the following figures can be found in Table 5-56 and Table 5-57.
In Figure 5-48, Figure 5-49, and Figure 5-50 the second LCDMCLK is shown as E1 and can be used as the enable strobe for a second display in Hitachi mode. The primary enable strobe is the LCDAC signal.
NOTE
The acronyms WRSU, WRDUR, WRHOLD, and GAP in the following figures correspond to the bit fields of the LIDDCS0CFG register described in Section 5.15.16.1.
Motorola 6800 mode can be configured to perform asynchronous operations or synchronous operations. When configured in asynchronous mode, LCDMCLK is not required, so it performs the CS1 function. When configured in synchronous mode, MCLK is available externally through the signal LCDMCLK. In asynchronous mode, the internal MCLK shown represents the internal clock that sequences the other signals. All parameter values associated with the following figures can be found in Table 5-56 and Table 5-57.
NOTE
In asynchronous Motorola 6800 mode, LCDCP functions as the read and write strobe.
NOTE
The acronyms WRSU, WRDUR, WRHOLD, GAP, RDHOLD, RDSU, and RDDUR in Figure 5-52, Figure 5-53, and Figure 5-54 correspond to the bit fields of the LIDDCS0CFG register described in Section 5.15.16.1.
Intel mode can be configured to perform asynchronous operations or synchronous operations. When configured in asynchronous mode, LCDMCLK is not required, so it performs the CS1 function. When configured in synchronous mode, MCLK is available externally through the signal LCDMCLK. In asynchronous mode, the internal MCLK shown represents the internal clock that sequences the other signals. All of the parameter values associated with the following figures can be found in Table 5-56 and Table 5-57.
NOTE
The acronyms WRSU, WRDUR, WRHOLD, GAP, RDHOLD, RDSU, and RDDUR in Figure 5-55, Figure 5-56, and Figure 5-57 correspond to the bit fields of the LIDDCS0CFG register described in Section 5.15.16.1.
Table 5-58 lists the LCD raster mode characteristics.
NO. | PARAMETER | MIN | TYP | MAX | UNIT | |
---|---|---|---|---|---|---|
L21 | tCYC | LCDCP cycle time | 16.67 | ns | ||
L22 | tPH | LCDCP pulse width high | 8.33 | ns | ||
L23 | tPL | LCDCP pulse width low | 8.33 | ns | ||
L24 | tDLYVAL | Delay time from LCDCP to LCDDATA[23:0] valid (write) | 2.0 | 7.3 | ns | |
L25 | tDLYINV | Delay time from LCDCP to LCDDATA[23:0] invalid (write) | 2.0 | 7.3 | ns | |
L26 | tDLYHAC | Delay time, LCDCP to LCDAC | 1.9 | 7.0 | ns | |
L27 | tTRANAC | LCDAC transition time | 0.5 | 3.3 | ns | |
L28 | tDLYFP | Delay time from LCDCP high to LCDFP | 1.7 | 6.5 | ns | |
L29 | tTRANFP | LCDFP transition time | 0.5 | 3.3 | ns | |
L30 | tDLYLP | Delay time from LCDCP high to LCDLP | 2.0 | 6.8 | ns | |
L31 | tTRANLP | LCDLP transition time | 0.5 | 3.3 | ns | |
L32 | tTRANCP | LCDCP transition time | 0.5 | 3.3 | ns | |
L33 | tTRANDATA | LCDDATA transition time | 0.5 | 3.3 | ns |
Frame-to-frame timing is derived through the following parameters in the LCD Raster Timing 1 (LCDRASTRTIM1) register:
Line-to-line timing is derived through the following parameters in the LCD Raster Timing 0 (LCDRASTRTIM0) register:
LCDAC timing is derived through the following parameter in the LCD Raster Timing 2 (LCDRASTRTIM2) register:
Figure 5-58 shows the display format produced in raster mode. An entire frame is delivered one line at a time. The first line delivered starts at data pixel (1, 1) and ends at data pixel (P, 1). The last line delivered starts at data pixel (1, L) and ends at data pixel (P, L). The beginning of each new frame is denoted by the activation of I/O signal LCDFP (VSYNC). The beginning of each new line is denoted by the activation of I/O signal LCDLP (HSYNC).
Table 5-59 lists the characteristics of the comparator.
PARAMETER | MIN | TYP | MAX | UNIT | |
---|---|---|---|---|---|
VINP, VINN (3) | Input voltage range | GNDA | VDDA | V | |
VCM | Input common-mode voltage range | GNDA | VDDA | V | |
VOS | Input offset voltage | ±10 | ±50 (5) | mV | |
IINP, IINN | Input leakage current over full voltage range | 2.0 | µA | ||
CMRR | Common-mode rejection ratio | 50 | dB | ||
tRT | Response time | 1.0 (4) | µs | ||
tMC | Comparator mode change to output valid | 10 | µs |
Table 5-60 lists the characteristics for the comparator.
PARAMETER | MIN | TYP | MAX | UNIT | |
---|---|---|---|---|---|
RHR | Resolution in high range | VDDA / 29.4 | V | ||
RLR | Resolution in low range | VDDA / 22.12 | V | ||
AHR | Absolute accuracy high range | ±RHR / 2 | V | ||
ALR | Absolute accuracy low range | ±RLR / 2 | V |
Table 5-61 and Table 5-62 list the reference voltages for the comparator under different conditions.
PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |
---|---|---|---|---|---|---|
VIREF | Reference voltage | VREF = 0x0 | 0.731 | 0.786 | 0.841 | V |
VREF = 0x1 | 0.843 | 0.898 | 0.953 | |||
VREF = 0x2 | 0.955 | 1.010 | 1.065 | |||
VREF = 0x3 | 1.067 | 1.122 | 1.178 | |||
VREF = 0x4 | 1.180 | 1.235 | 1.290 | |||
VREF = 0x5 | 1.292 | 1.347 | 1.402 | |||
VREF = 0x6 | 1.404 | 1.459 | 1.514 | |||
VREF = 0x7 | 1.516 | 1.571 | 1.627 | |||
VREF = 0x8 | 1.629 | 1.684 | 1.739 | |||
VREF = 0x9 | 1.741 | 1.796 | 1.851 | |||
VREF = 0xA | 1.853 | 1.908 | 1.963 | |||
VREF = 0xB | 1.965 | 2.020 | 2.076 | |||
VREF = 0xC | 2.078 | 2.133 | 2.188 | |||
VREF = 0xD | 2.190 | 2.245 | 2.300 | |||
VREF = 0xE | 2.302 | 2.357 | 2.412 | |||
VREF = 0xF | 2.414 | 2.469 | 2.525 |
PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |
---|---|---|---|---|---|---|
VIREF | Reference voltage | VREF = 0x0 | 0.000 | 0.000 | 0.074 | V |
VREF = 0x1 | 0.076 | 0.149 | 0.223 | |||
VREF = 0x2 | 0.225 | 0.298 | 0.372 | |||
VREF = 0x3 | 0.374 | 0.448 | 0.521 | |||
VREF = 0x4 | 0.523 | 0.597 | 0.670 | |||
VREF = 0x5 | 0.672 | 0.746 | 0.820 | |||
VREF = 0x6 | 0.822 | 0.895 | 0.969 | |||
VREF = 0x7 | 0.971 | 1.044 | 1.118 | |||
VREF = 0x8 | 1.120 | 1.193 | 1.267 | |||
VREF = 0x9 | 1.269 | 1.343 | 1.416 | |||
VREF = 0xA | 1.418 | 1.492 | 1.565 | |||
VREF = 0xB | 1.567 | 1.641 | 1.715 | |||
VREF = 0xC | 1.717 | 1.790 | 1.864 | |||
VREF = 0xD | 1.866 | 1.939 | 2.013 | |||
VREF = 0xE | 2.015 | 2.089 | 2.162 | |||
VREF = 0xF | 2.164 | 2.238 | 2.311 |
Table 5-63 lists the PWM timing characteristics.
PARAMETER | MIN | TYP | MAX | UNIT | |
---|---|---|---|---|---|
tFLTW | Minimum fault pulse width | 2 | PWM clock periods | ||
tFLTMAX | MnFAULTn assertion to PWM inactive (1) | 24 + (1 PWM clock) | ns | ||
tFLTMIN | MnFAULTn deassertion to PWM active (2) | 5 | ns |
Table 5-64 lists the JTAG characteristics.
NO. | PARAMETER | MIN | TYP | MAX | UNIT | ||
---|---|---|---|---|---|---|---|
J1 | fTCK | TCK operational clock frequency | 0 | 10 | MHz | ||
J2 | tTCK | TCK operational clock period | 100 | ns | |||
J3 | tTCK_LOW | TCK clock low time | tTCK / 2 | ns | |||
J4 | tTCK_HIGH | TCK clock high time | tTCK / 2 | ns | |||
J5 | tTCK_R | TCK rise time | 0 | 10 | ns | ||
J6 | tTCK_F | TCK fall time | 0 | 10 | ns | ||
J7 | tTMS_SU | TMS setup time to TCK rise | 8 | ns | |||
J8 | tTMS_HLD | TMS hold time from TCK rise | 4 | ns | |||
J9 | tTDI_SU | TDI setup time to TCK rise | 18 | ns | |||
J10 | tTDI_HLD | TDI hold time from TCK rise | 4 | ns | |||
J11 | tTDO_ZDV | TCK fall to data valid from Hi-Z | 2-mA drive | 13 | 35 | ns | |
4-mA drive | 9 | 26 | |||||
8-mA drive | 8 | 26 | |||||
8-mA drive with slew rate control | 10 | 29 | |||||
10-mA drive | 11 | 13 | |||||
12-mA drive | 11 | 14 | |||||
J12 | tTDO_DV | TCK fall to data valid from data valid | 2-mA drive | 14 | 20 | ns | |
4-mA drive | 10 | 26 | |||||
8-mA drive | 8 | 21 | |||||
8-mA drive with slew rate control | 10 | 26 | |||||
10-mA drive | 12 | 14 | |||||
12-mA drive | 12 | 15 | |||||
J13 | tTDO_DVZ | TCK fall to Hi-Z from data valid | 2-mA drive | 7 | 16 | ns | |
4-mA drive | 7 | 16 | |||||
8-mA drive | 7 | 16 | |||||
8-mA drive with slew rate control | 8 | 19 | |||||
10-mA drive | 20 | 22 | |||||
12-mA drive | 20 | 25 |