JAJSFU6C July   2018  – July 2019 LM5180

ADVANCE INFORMATION for pre-production products; subject to change without notice.  

  1. 特長
  2. アプリケーション
  3. 概要
    1.     Device Images
      1.      代表的なアプリケーション
      2.      標準的な効率、VOUT = 5V
  4. 改訂履歴
  5. 概要(続き)
  6. Pin Configuration and Functions
    1.     Pin Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Typical Characteristics
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1  Integrated Power MOSFET
      2. 8.3.2  PSR Flyback Modes of Operation
      3. 8.3.3  Setting the Output Voltage
        1. 8.3.3.1 Diode Thermal Compensation
      4. 8.3.4  Control Loop Error Amplifier
      5. 8.3.5  Precision Enable
      6. 8.3.6  Configurable Soft Start
      7. 8.3.7  External Bias Supply
      8. 8.3.8  Minimum On-Time and Off-Time
      9. 8.3.9  Overcurrent Protection
      10. 8.3.10 Thermal Shutdown
    4. 8.4 Device Functional Modes
      1. 8.4.1 Shutdown Mode
      2. 8.4.2 Standby Mode
      3. 8.4.3 Active Mode
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Applications
      1. 9.2.1 Design 1: Wide VIN, Low IQ PSR Flyback Converter Rated at 5 V, 1 A
        1. 9.2.1.1 Design Requirements
        2. 9.2.1.2 Detailed Design Procedure
          1. 9.2.1.2.1  Custom Design With WEBENCH® Tools
          2. 9.2.1.2.2  Custom Design With Excel Quickstart Tool
          3. 9.2.1.2.3  Flyback Transformer – T1
          4. 9.2.1.2.4  Flyback Diode – DFLY
          5. 9.2.1.2.5  Zener Clamp Circuit – DF, DCLAMP
          6. 9.2.1.2.6  Output Capacitor – COUT
          7. 9.2.1.2.7  Input Capacitor – CIN
          8. 9.2.1.2.8  Feedback Resistor – RFB
          9. 9.2.1.2.9  Thermal Compensation Resistor – RTC
          10. 9.2.1.2.10 UVLO Resistors – RUV1, RUV2
          11. 9.2.1.2.11 Soft-Start Capacitor – CSS
        3. 9.2.1.3 Application Curves
      2. 9.2.2 Design 2: PSR Flyback Converter With Dual Outputs of 15 V and –7.7 V at 200 mA
        1. 9.2.2.1 Design Requirements
        2. 9.2.2.2 Detailed Design Procedure
          1. 9.2.2.2.1 Flyback Transformer – T1
          2. 9.2.2.2.2 Flyback Diodes – DFLY1 and DFLY2
          3. 9.2.2.2.3 Input Capacitor – CIN
          4. 9.2.2.2.4 Feedback Resistor – RFB
          5. 9.2.2.2.5 UVLO Resistors – RUV1, RUV2
        3. 9.2.2.3 Application Curves
      3. 9.2.3 Design 3: PSR Flyback Converter With Stacked Dual Outputs of 24 V and 5 V
        1. 9.2.3.1 Design Requirements
        2. 9.2.3.2 Detailed Design Procedure
          1. 9.2.3.2.1 Flyback Transformer – T1
          2. 9.2.3.2.2 Feedback Resistor – RFB
          3. 9.2.3.2.3 UVLO Resistors – RUV1, RUV2
        3. 9.2.3.3 Application Curves
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Examples
  12. 12デバイスおよびドキュメントのサポート
    1. 12.1 デバイス・サポート
      1. 12.1.1 デベロッパー・ネットワークの製品に関する免責事項
      2. 12.1.2 開発サポート
      3. 12.1.3 WEBENCH® ツールによるカスタム設計
    2. 12.2 ドキュメントのサポート
      1. 12.2.1 関連資料
    3. 12.3 ドキュメントの更新通知を受け取る方法
    4. 12.4 コミュニティ・リソース
    5. 12.5 商標
    6. 12.6 静電気放電に関する注意事項
    7. 12.7 Glossary
  13. 13メカニカル、パッケージ、および注文情報

Layout Guidelines

PCB layout is a critical for good power supply design. There are several paths that conduct high slew-rate currents or voltages that can interact with transformer leakage inductance or parasitic capacitance to generate noise and EMI or degrade the power supply's performance.

  1. Bypass the VIN pin to GND with a low-ESR ceramic capacitor, preferably of X7R or X7S dielectric. Place CIN as close as possible to the LM5180 VIN and GND pins. Ground return paths for the input capacitor(s) must consist of localized top-side planes that connect to the GND pin and exposed PAD.
  2. Minimize the loop area formed by the input capacitor connections and the VIN and GND pins.
  3. Locate the transformer close to the SW pin. Minimize the area of the SW trace or plane to prevent excessive e-field or capacitive coupling.
  4. Minimize the loop area formed by the diode-Zener clamp circuit connections and the primary winding terminals of the transformer.
  5. Minimize the loop area formed by the flyback rectifying diode, output capacitor and the secondary winding terminals of the transformer.
  6. Connect adequate copper at the cathode of the flyback diode to prevent overheating during overload or high ambient temperature conditions.
  7. Tie the GND pin directly to the power pad under the device and to a heat-sinking PCB ground plane.
  8. Use a ground plane in one of the middle layers as a noise shielding and heat dissipation path.
  9. Have a single-point ground connection to the plane. Route the return connections for the reference resistor, soft-start, and enable components directly to the GND pin. This prevents any switched or load currents from flowing in analog ground traces. If not properly handled, poor grounding results in degraded load regulation or erratic output voltage ripple behavior.
  10. Make VIN+, VOUT+ and ground bus connections short and wide. This reduces any voltage drops on the input or output paths of the converter and maximizes efficiency.
  11. Minimize trace length to the FB pin. Locate the feedback resistor close to the FB pin.
  12. Locate components RSET, RTC and CSS as close as possible to their respective pins. Route with minimal trace lengths.
  13. Place a capacitor between input and output return connections to route common-mode noise currents directly back to their source.
  14. Provide adequate heatsinking for the LM5180 to keep the junction temperature below 150°C. For operation at full rated load, the top-side ground plane is an important heat-dissipating area. Use an array of heat-sinking vias to connect the exposed PAD to the PCB ground plane. If the PCB has multiple copper layers, connect these thermal vias to inner-layer ground planes. The connection to VOUT+ provides heatsinking for the flyback diode.