JAJSG06E April   2016  – October 2018 LMG3410R070 , LMG3411R070

PRODUCTION DATA.  

  1. 特長
  2. アプリケーション
  3. 概要
    1.     Device Images
      1.      ブロック概略図
      2.      100V/nsを超えるスイッチング性能
  4. 改訂履歴
  5. 概要(続き)
  6. Pin Configuration and Functions
    1.     Pin Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Switching Characteristics
    7. 7.7 Typical Characteristics
  8. Parameter Measurement Information
    1. 8.1 Switching Parameters
      1. 8.1.1 Turn-on Delays
      2. 8.1.2 Turn-off Delays
      3. 8.1.3 Drain Slew Rate
      4. 8.1.4 Turn-on and Turn-off Energy
  9. Detailed Description
    1. 9.1 Overview
    2. 9.2 Functional Block Diagram
    3. 9.3 Feature Description
      1. 9.3.1 Direct-Drive GaN Architecture
      2. 9.3.2 Internal Buck-Boost DC-DC Converter
      3. 9.3.3 Internal Auxiliary LDO
      4. 9.3.4 Fault Detection
        1. 9.3.4.1 Over-current Protection
        2. 9.3.4.2 Over-Temperature Protection and UVLO
      5. 9.3.5 Drive Strength Adjustment
    4. 9.4 Device Functional Modes
      1. 9.4.1 Low-Power Mode
  10. 10Application and Implementation
    1. 10.1 Application Information
    2. 10.2 Typical Application
      1. 10.2.1 Design Requirements
      2. 10.2.2 Detailed Design Procedure
        1. 10.2.2.1 Slew Rate Selection
          1. 10.2.2.1.1 Startup and Slew Rate with Bootstrap High-Side Supply
        2. 10.2.2.2 Signal Level-Shifting
        3. 10.2.2.3 Buck-Boost Converter Design
      3. 10.2.3 Application Curves
    3. 10.3 Paralleling GaN Devices
    4. 10.4 Do's and Don'ts
  11. 11Power Supply Recommendations
    1. 11.1 Using an Isolated Power Supply
    2. 11.2 Using a Bootstrap Diode
      1. 11.2.1 Diode Selection
      2. 11.2.2 Managing the Bootstrap Voltage
      3. 11.2.3 Reliable Bootstrap Start-up
  12. 12Layout
    1. 12.1 Layout Guidelines
      1. 12.1.1 Power Loop Inductance
      2. 12.1.2 Signal Ground Connection
      3. 12.1.3 Bypass Capacitors
      4. 12.1.4 Switch-Node Capacitance
      5. 12.1.5 Signal Integrity
      6. 12.1.6 High-Voltage Spacing
      7. 12.1.7 Thermal Recommendations
    2. 12.2 Layout Example
  13. 13デバイスおよびドキュメントのサポート
    1. 13.1 デバイス・サポート
      1. 13.1.1 デベロッパー・ネットワークの製品に関する免責事項
    2. 13.2 ドキュメントのサポート
      1. 13.2.1 関連資料
    3. 13.3 ドキュメントの更新通知を受け取る方法
    4. 13.4 コミュニティ・リソース
    5. 13.5 商標
    6. 13.6 静電気放電に関する注意事項
    7. 13.7 Glossary
  14. 14メカニカル、パッケージ、および注文情報

Turn-on and Turn-off Energy

The turn-on and turn-off energy, shown in Figure 8, represent the energy absorbed by the low-side device during the turn-on and turn-off transients of the circuit in Figure 11, respectively. As this circuit represents a synchronous buck converter, with input shorted to output, the switching energy is dissipated in the low-side device. The turn-on transition is lossy, while the turn-off transition is essentially lossless; the output capacitance of the devices is charged by the inductor current. The turn-on and turn-off losses have been calculated from experimental waveforms by integrating the product of the drain current with the drain-source voltage over the turn-on and turn-off times, respectively. The skew of probes for voltage and current are very important for accurate measurement of turn-on and turn-off energy.

The switching loss of the converter can be determined by adding the turn-on and turn-off energy in Figure 8, adjusting for the RDRV value (shown in Figure 9). To obtain the switching loss, multiply this value by the switching frequency. The obtained loss is a sum of the V-I overlap loss (due to hard switching) and the loss caused by charging and discharging the COSS of both devices. Additional test-fixture capacitance, including PCB and inductor intra-winding capacitance, has not been removed from these measurements.