JAJSJ69L August   1999  – November 2024 TL331 , TL331B , TL391B

PRODUCTION DATA  

  1.   1
  2. 特長
  3. アプリケーション
  4. 概要
  5. Pin Configuration and Functions
    1.     Pin Functions
  6. Specifications
    1. 5.1  Absolute Maximum Ratings, TL331 and TL331K
    2. 5.2  Absolute Maximum Ratings, TL331B and TL391B
    3. 5.3  ESD Ratings - TL331B and TL391B
    4. 5.4  ESD Ratings, TL331 and TL331K
    5. 5.5  Recommended Operating Conditions, TL331B and TL391B
    6. 5.6  Recommended Operating Conditions, TL331 and TL331K
    7. 5.7  Thermal Information
    8. 5.8  Electrical Characteristics, TL331B and TL391B
    9. 5.9  Switching Characteristics, TL331B and TL391B
    10. 5.10 Electrical Characteristics, TL331 and TL331K
    11. 5.11 Switching Characteristics, TL331 and TL331K
    12. 5.12 Typical Characteristics
  7. Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagram
    3. 6.3 Feature Description
    4. 6.4 Device Functional Modes
      1. 6.4.1 Voltage Comparison
  8. Application and Implementation
    1. 7.1 Application Information
    2. 7.2 Typical Application
      1. 7.2.1 Design Requirements
      2. 7.2.2 Detailed Design Procedure
        1. 7.2.2.1 Input Voltage Range
        2. 7.2.2.2 Minimum Overdrive Voltage
        3. 7.2.2.3 Output and Drive Current
        4. 7.2.2.4 Response Time
      3. 7.2.3 Application Curves
      4. 7.2.4 ESD Protection
      5. 7.2.5 Power Supply Recommendations
      6. 7.2.6 Layout
        1. 7.2.6.1 Layout Guidelines
        2. 7.2.6.2 Layout Example
  9. Device and Documentation Support
    1. 8.1 Documentation Support
      1. 8.1.1 Related Documentation
    2. 8.2 Receiving Notification of Documentation Updates
    3. 8.3 サポート・リソース
    4. 8.4 Trademarks
    5. 8.5 静電気放電に関する注意事項
    6. 8.6 用語集
  10. Revision History
  11. 10Mechanical, Packaging, and Orderable Information

Input Voltage Range

When choosing the input voltage range, the input common mode voltage range (VICR) must be taken in to account. If temperature operation is above or below 25°C the VICR can range from 0V to VCC – 1.5V. This limits the input voltage range to as high as VCC – 1.5V and as low as 0V. Operation outside of this range can yield incorrect comparisons.

Below is a list of input voltage situation and their outcomes:

  1. When both IN- and IN+ are both within the common mode range:
    1. If IN- is higher than IN+ and the offset voltage, the output is low and the output transistor is sinking current
    2. If IN- is lower than IN+ and the offset voltage, the output is high impedance and the output transistor is not conducting
  2. When IN- is higher than common mode and IN+ is within common mode, the output is low and the output transistor is sinking current
  3. When IN+ is higher than common mode and IN- is within common mode, the output is high impedance and the output transistor is not conducting
  4. When IN- and IN+ are both higher than common mode, please see the Both Inputs Above Input Range Behavior section of the LM339 Family Application Note (SNOAA35).