JAJSL08H september   2009  – february 2021 BQ24040 , BQ24041 , BQ24045

PRODUCTION DATA  

  1.   1
  2. 特長
  3. アプリケーション
  4. 概要
  5. Revision History
  6. Device Comparison
  7. Pin Configuration and Functions
  8. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Timing Requirements
    7. 7.7 Typical Operational Characteristics (Protection Circuits Waveforms)
  9. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Power-Down or Undervoltage Lockout (UVLO)
      2. 8.3.2 Power-up
      3. 8.3.3 Sleep Mode
      4. 8.3.4 New Charge Cycle
      5. 8.3.5 Overvoltage-Protection (OVP) – Continuously Monitored
      6. 8.3.6 Power Good Indication ( PG)
      7. 8.3.7 CHG Terminal Indication
    4. 8.4 Device Functional Modes
      1. 8.4.1  CHG and PG LED Pull-up Source
      2. 8.4.2  Auto Start-up (BQ24041)
      3. 8.4.3  IN-DPM (VIN-DPM or IN-DPM)
      4. 8.4.4  OUT
      5. 8.4.5  ISET
      6. 8.4.6  PRE_TERM – Pre-Charge and Termination Programmable Threshold, BQ24040/5
      7. 8.4.7  ISET2
      8. 8.4.8  TS (BQ24040/5)
      9. 8.4.9  Termination and Timer Disable Mode (TTDM) - TS Terminal High
      10. 8.4.10 Timers, BQ24040 and BQ24045 only
      11. 8.4.11 Termination
      12. 8.4.12 Battery Detect Routine
      13. 8.4.13 Refresh Threshold
      14. 8.4.14 Starting a Charge on a Full Battery
  10. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Applications
      1. 9.2.1 Typical Application: BQ24040 and BQ24045
        1. 9.2.1.1 Design Requirements
        2. 9.2.1.2 Detailed Design Procedure
          1. 9.2.1.2.1 Calculations
            1. 9.2.1.2.1.1 Program the Fast Charge Current, ISET:
            2. 9.2.1.2.1.2 Program the Termination Current Threshold, ITERM:
            3. 9.2.1.2.1.3 TS Function (BQ24040)
            4. 9.2.1.2.1.4 CHG and PG
          2. 9.2.1.2.2 Selecting In and Out Terminal Capacitors
        3. 9.2.1.3 Application Curves
      2. 9.2.2 Typical Application Circuit: BQ24041, with ASI and ASO
        1. 9.2.2.1 Design Requirements
        2. 9.2.2.2 Detailed Design Procedure
        3. 9.2.2.3 Application Curves
  11. 10Power Supply Recommendations
  12. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
    3. 11.3 Thermal Considerations
      1. 11.3.1 Leakage Current Effects on Battery Capacity
  13. 12Device and Documentation Support
    1. 12.1 Device Support
      1. 12.1.1 サード・パーティ製品に関する免責事項
    2. 12.2 Documentation Support
      1. 12.2.1 Related Documentation
    3. 12.3 ドキュメントの更新通知を受け取る方法
    4. 12.4 サポート・リソース
    5. 12.5 Trademarks
    6. 12.6 静電気放電に関する注意事項
    7. 12.7 用語集
  14. 13Mechanical, Packaging, and Orderable Information

Layout Guidelines

To obtain optimal performance, the decoupling capacitor from IN to GND (thermal pad) and the output filter capacitors from OUT to GND (thermal pad) should be placed as close as possible to the BQ2405x, with short trace runs to both IN, OUT, and GND (thermal pad).

  • All low-current GND connections should be kept separate from the high-current charge or discharge paths from the battery. Use a single-point ground technique incorporating both the small signal ground path and the power ground path.
  • The high current charge paths into IN terminal and from the OUT terminal must be sized appropriately for the maximum charge current in order to avoid voltage drops in these traces
  • The BQ2404x family is packaged in a thermally enhanced MLP package. The package includes a thermal pad to provide an effective thermal contact between the IC and the printed circuit board (PCB); this thermal pad is also the main ground connection for the device. Connect the thermal pad to the PCB ground connection. It is best to use multiple 10mil vias in the power pad of the IC and close enough to conduct the heat to the bottom ground plane. The bottom ground plane should avoid traces that “cut off” the thermal path. The thinner the PCB the less temperature rise. The EVM PCB has a thickness of 0.031 inches and uses 2 oz. (2.8mil thick) copper on top and bottom, and is a good example of optimal thermal performance.