JAJSNA3 September   2024 TUSB1064-Q1

PRODUCTION DATA  

  1.   1
  2. 特長
  3. アプリケーション
  4. 概要
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information
    5. 5.5 Electrical Characteristics
    6. 5.6 Timing Requirements
    7. 5.7 Switching Characteristics
    8. 5.8 Typical Characteristics
  7. Parameter Measurement Information
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 USB 3.2
      2. 7.3.2 DisplayPort
      3. 7.3.3 4-Level Inputs
      4. 7.3.4 Receiver Linear Equalization
    4. 7.4 Device Functional Modes
      1. 7.4.1 Device Configuration in GPIO Mode
      2. 7.4.2 Device Configuration In I2C Mode
      3. 7.4.3 DisplayPort Mode
      4. 7.4.4 Linear EQ Configuration
      5. 7.4.5 USB3 Modes
      6. 7.4.6 Operation Timing – Power Up
    5. 7.5 Programming
      1. 7.5.1 TUSB1064-Q1 I2C Target Behavior
  9. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1 ESD Protection
        2. 8.2.2.2 Support for DisplayPort UFP_D Pin Assignment E
      3. 8.2.3 Application Curve
    3. 8.3 System Examples
      1. 8.3.1 USB 3.1 Only
      2. 8.3.2 USB 3.1 and 2 Lanes of DisplayPort
      3. 8.3.3 DisplayPort Only
    4. 8.4 Power Supply Recommendations
    5. 8.5 Layout
      1. 8.5.1 Layout Guidelines
      2. 8.5.2 Layout Example
  10. Register Maps
    1. 9.1 General Register (address = 0x0A) [reset = 00000001]
    2. 9.2 DisplayPort Control/Status Registers (address = 0x10) [reset = 00000000]
    3. 9.3 DisplayPort Control/Status Registers (address = 0x11) [reset = 00000000]
    4. 9.4 DisplayPort Control/Status Registers (address = 0x12) [reset = 00000000]
    5. 9.5 DisplayPort Control/Status Registers (address = 0x13) [reset = 00000000]
    6. 9.6 USB3.1 Control/Status Registers (address = 0x20) [reset = 00000000]
    7. 9.7 USB3.1 Control/Status Registers (address = 0x21) [reset = 00000000]
    8. 9.8 USB3.1 Control/Status Registers (address = 0x22) [reset = 00000000]
  11. 10Device and Documentation Support
    1. 10.1 ドキュメントの更新通知を受け取る方法
    2. 10.2 サポート・リソース
    3. 10.3 Trademarks
    4. 10.4 静電気放電に関する注意事項
    5. 10.5 用語集
  12. 11Revision History
  13. 12Mechanical, Packaging, and Orderable Information

Overview

The TUSB1064-Q1 is a VESA USB Type-C Alt Mode redriving switch that supports data rates up to 8.1Gbps for upstream facing port. This device uses 5th generation USB redriver technology. The device is used for UFP pin assignments C and D from the VESA DisplayPort Alt Mode on USB Type-C Standard.

The TUSB1064-Q1 provides several levels of receive equalization to compensate for cable and board trace loss which if not equalized causes inter-symbol interference (ISI) when USB 3.2 or DisplayPort 1.4 signals travel across a PCB or cable. This device requires a 3.3V power supply. The device comes in an automotive grade 2 temperature range.

For a sink application, the TUSB1064-Q1 enables the system to pass both transmitter compliance and receiver jitter tolerance tests for USB 3.2 up to 10Gbps and DisplayPort version 1.4 HBR3. The redriver recovers incoming data by applying equalization that compensates for channel loss, and drives out signals with a high differential voltage. Each channel has a receiver equalizer with selectable gain settings. Set the equalization based on the amount of insertion loss in the channels connected to the TUSB1064-Q1 . Independent equalization control for each channel can be set using EQ[1:0], SSEQ[1:0], and DPEQ[1:0] pins.

The TUSB1064-Q1 advanced state machine makes the device transparent to hosts and devices. After power up, the TUSB1064-Q1 periodically performs receiver detection on the TX pairs. If the TUSB1064-Q1 detects a USB 3.2 receiver, the RX termination is enabled, and the TUSB1064-Q1 is ready to re-drive.