JAJSP72 August   2024 TPSM83102

PRODUCTION DATA  

  1.   1
  2. 特長
  3. アプリケーション
  4. 概要
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Rating
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics 
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Undervoltage Lockout (UVLO)
      2. 7.3.2 Enable and Soft Start
      3. 7.3.3 Adjustable Output Voltage
      4. 7.3.4 Reverse Current Operation
      5. 7.3.5 Protection Features
        1. 7.3.5.1 Input Overvoltage Protection
        2. 7.3.5.2 Short Circuit Protection
        3. 7.3.5.3 Thermal Shutdown
    4. 7.4 Device Functional Modes
    5. 7.5 Programming
      1. 7.5.1 Serial Interface Description
      2. 7.5.2 Standard-, Fast-, and Fast-Mode Plus Protocol
      3. 7.5.3 I2C Update Sequence
    6. 7.6 Register Map
      1. 7.6.1 Register Description
        1. 7.6.1.1 Register Map
        2. 7.6.1.2 Register CONTROL1 (Register address: 0x02; Default: 0x08)
        3. 7.6.1.3 Register VOUT (Register address: 0x03; Default: 0x5C)
        4. 7.6.1.4 Register CONTROL2 (Register address: 0x05; Default: 0x45)
  9. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1 Custom Design with WEBENCH Tools
        2. 8.2.2.2 Output Capacitor Selection
        3. 8.2.2.3 Input Capacitor Selection
        4. 8.2.2.4 Setting the Output Voltage
      3. 8.2.3 Application Curves
  10. Layout
    1. 9.1 Layout Guidelines
    2. 9.2 Layout Example
  11. 10Device and Documentation Support
    1. 10.1 Device Support
      1. 10.1.1 サード・パーティ製品に関する免責事項
      2. 10.1.2 Development Support
        1. 10.1.2.1 Custom Design with WEBENCH Tools
    2. 10.2 ドキュメントの更新通知を受け取る方法
    3. 10.3 サポート・リソース
    4. 10.4 Trademarks
    5. 10.5 静電気放電に関する注意事項
    6. 10.6 用語集
  12. 11Revision History
  13. 12Mechanical, Packaging, and Orderable Information
    1. 12.1 Tape and Reel Information
    2. 12.2 Mechanical Data

Standard-, Fast-, and Fast-Mode Plus Protocol

The master initiates a data transfer by generating a start condition. The start condition is when a high-to-low transition occurs on the SDA line while SCL is high, as shown in Figure 7-4. All I2C-compatible devices recognize a start condition.

TPSM83102 TPSM83103 START and STOP ConditionsFigure 7-4 START and STOP Conditions

The master then generates the SCL pulses and transmits the 7-bit address and the read/write direction bit, R/W, on the SDA line. During all transmissions, the master ensures that data is valid. A valid data condition requires the SDA line to be stable during the entire high period of the clock pulse (see Figure 7-5). All devices recognize the address sent by the master and compare it to their internal fixed addresses. Only the slave device with a matching address generates an acknowledge (see Figure 7-6) by pulling the SDA line low during the entire high period of the ninth SCL cycle. Upon detecting this acknowledge, the master knows that communication link with a slave has been established.

TPSM83102 TPSM83103 Bit Transfer on the Serial InterfaceFigure 7-5 Bit Transfer on the Serial Interface

The master generates further SCL cycles to either transmit data to the slave (R/W bit 1) or receive data from the slave (R/W bit 0). In either case, the receiver needs to acknowledge the data sent by the transmitter. An acknowledge signal can either be generated by the master or by the slave, depending on which one is the receiver. 9-bit valid data sequences consisting of 8-bit data and 1-bit acknowledge can continue as long as necessary.

To signal the end of the data transfer, the master generates a stop condition by pulling the SDA line from low to high while the SCL line is high (see Figure 7-4). This releases the bus and stops the communication link with the addressed slave. All I2C-compatible devices must recognize the stop condition. Upon the receipt of a stop condition, all devices know that the bus is released and they wait for a start condition followed by a matching address.

Attempting to read data from register addresses not listed in this section results in 00h being read out.

TPSM83102 TPSM83103 Acknowledge on the I2C BusFigure 7-6 Acknowledge on the I2C Bus
TPSM83102 TPSM83103 Bus ProtocolFigure 7-7 Bus Protocol