JAJSP89 November   2024 LM5190

PRODUCTION DATA  

  1.   1
  2. 特長
  3. アプリケーション
  4. 概要
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information
    5. 5.5 Electrical Characteristics
    6. 5.6 Typical Characteristics
  7. Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagram
    3. 6.3 Feature Description
      1. 6.3.1  Input Voltage Range (VIN)
      2. 6.3.2  High-Voltage Bias Supply Regulator (VCC, BIAS)
      3. 6.3.3  Precision Enable (EN)
      4. 6.3.4  Power-Good Monitor (PGOOD)
      5. 6.3.5  Switching Frequency (RT)
      6. 6.3.6  Low Dropout Mode
      7. 6.3.7  Dual Random Spread Spectrum (DRSS)
      8. 6.3.8  Soft Start
      9. 6.3.9  Output Voltage Setpoint (FB)
      10. 6.3.10 Minimum Controllable On Time
      11. 6.3.11 Inductor Current Sense (ISNS+, VOUT)
      12. 6.3.12 Voltage Loop Error Amplifier
      13. 6.3.13 Current Monitor, Programmable Current Limit, and Current Loop Error Amplifier (IMON/ILIM, ISET)
      14. 6.3.14 Dual Loop Architecture
      15. 6.3.15 PWM Comparator
      16. 6.3.16 Slope Compensation
      17. 6.3.17 Hiccup Mode Current Limiting
      18. 6.3.18 High-Side and Low-Side Gate Drivers (HO, LO)
    4. 6.4 Device Functional Modes
      1. 6.4.1 Sleep Mode
      2. 6.4.2 Forced PWM Mode and Synchronization (FPWM/SYNC)
      3. 6.4.3 Thermal Shutdown
  8. Application and Implementation
    1. 7.1 Application Information
      1. 7.1.1 Power Train Components
        1. 7.1.1.1 Buck Inductor
        2. 7.1.1.2 Output Capacitors
        3. 7.1.1.3 Input Capacitors
        4. 7.1.1.4 Power MOSFETs
        5. 7.1.1.5 EMI Filter
      2. 7.1.2 Error Amplifier and Compensation
    2. 7.2 Typical Applications
      1. 7.2.1 High Efficiency 400kHz CC-CV Regulator
        1. 7.2.1.1 Design Requirements
        2. 7.2.1.2 Detailed Design Procedure
          1. 7.2.1.2.1 Buck Inductor
          2. 7.2.1.2.2 Current-Sense Resistance
          3. 7.2.1.2.3 Output Capacitors
          4. 7.2.1.2.4 Input Capacitors
          5. 7.2.1.2.5 Frequency Set Resistor
          6. 7.2.1.2.6 Feedback Resistors
        3. 7.2.1.3 Application Curves
    3. 7.3 Power Supply Recommendations
    4. 7.4 Layout
      1. 7.4.1 Layout Guidelines
        1. 7.4.1.1 Power Stage Layout
        2. 7.4.1.2 Gate-Drive Layout
        3. 7.4.1.3 PWM Controller Layout
        4. 7.4.1.4 Thermal Design and Layout
        5. 7.4.1.5 Ground Plane Design
      2. 7.4.2 Layout Example
  9. Device and Documentation Support
    1. 8.1 Device Support
      1. 8.1.1 Development Support
    2. 8.2 Documentation Support
      1. 8.2.1 Related Documentation
        1. 8.2.1.1 PCB Layout Resources
        2. 8.2.1.2 Thermal Design Resources
    3. 8.3 ドキュメントの更新通知を受け取る方法
    4. 8.4 サポート・リソース
    5. 8.5 Trademarks
    6. 8.6 静電気放電に関する注意事項
    7. 8.7 用語集
  10. Revision History
  11. 10Mechanical, Packaging, and Orderable Information

Current Monitor, Programmable Current Limit, and Current Loop Error Amplifier (IMON/ILIM, ISET)

In the current loop, the LM5190 has a high-gain transconductance amplifier that generates an error current proportional to the difference between the IMON voltage and an internal precision reference (1V). The transconductance of the amplifier is 1000µS. The current loop error amplifier only takes control when the internal minimum function block IMIN selector selects the current from the current loop error amplifier. See Section 6.3.14 for more details regarding the constant-current constant-voltage operation.

LM5190 Current Loop Functional Block
                    Diagram Figure 6-5 Current Loop Functional Block Diagram

The RIMON is used to programmed the CC regulation target. The CC regulation target is usually defined to be smaller than the maximum current defined by the cycle-by-cycle peak current limit in Inductor Current Sense (ISNS+, VOUT). The RIMON is selected by Equation 9.

Equation 9. R I M O N = V r e f I R C S × g m _ I M O N × I C C + I I M O N _ o f f s e t

where

  • VrefI is 1V (typical).
  • RCS is the current sensing resistance.
  • gm_IMON is the current monitor gain of 2µA/mV.
  • ICC is the CC regulation target.
  • IIMON_offset is the IMON offset current of 25µA.

The CIMON is used to form the RC filter with RIMON and filter out the sensed inductor current ripple to the achieve average current regulation. The CIMON also sets the response of the current loop. With RIMON and CIMON selected, IMON/ILIM multifunctional pin can be used as the current monitor when the regulator is operating in CV loop. The average inductor current can be read from IMON/ILIM voltage by using Equation 10.

Equation 10. I A V G = V I M O N R I M O N - I I M O N _ o f f s e t R C S × g m _ I M O N

where VIMON is the voltage on IMON/ILIM pin and IAVG is the average inductor current. The DC offset current is introduced at IMON/ILIM pin to raise the no-load signal above the possible ground noise floor.

ISET can be used to dynamically program the CC regulation current. An external voltage forced at ISET can set the CC regulation current by Equation 11.

Equation 11. V I S E T = R I M O N × ( I C C s e t × R C S × g m I M O N + I I M O N _ o f f s e t )

where ICCset is the desired average current to be programmed by ISET. ISET is only functional when ISET voltage is smaller than VrefI (1V typical). ISET has an internal current source of 10µA typical so ISET can be used with a capacitor at the pin to achieve the current soft start during CC transient such as super capacitor and battery charging conditions. Discharge this ISET capacitor externally if needed. Due to this internal current source, a resistor connected to ISET and AGND can also determine the voltage on ISET.