JAJSTW1 August 2024 TPS55287-Q1
PRODUCTION DATA
PIN | I/O | DESCRIPTION | |
---|---|---|---|
NO. | NAME | ||
1 | EN/UVLO | I | Enable logic input and programmable input voltage undervoltage lockout (UVLO) input. Logic high level enables the device. Logic low level disables the device and turns it into shutdown mode. After the voltage at the EN/UVLO pin is above the logic high voltage of 1.15V, this pin acts as programmable UVLO input with 1.23V internal reference. |
2 | MODE | I | I2C target address selection. When it is connected to logic high voltage, the I2C target address is 74H. When it is connected to logic low voltage, I2C target address is 75H. |
3 | SCL | I | Clock of I2C interface. |
4 | SDA | I/O | Data of I2C interface. |
5 | DITH/SYNC | I | Dithering frequency setting and synchronous clock input. Use a capacitor between this pin and ground to set the dithering frequency. When this pin is short to ground or pulled above 1.2V, there is no dithering function. An external clock can be applied at this pin to synchronize the switching frequency. |
6 | FSW | I | The switching frequency is programmed by a resistor between this pin and the AGND pin. |
7 | VIN | PWR | Input of the buck-boost conveter. |
8 | SW1 | PWR | The switching node pin of the buck side. It is connected to the drain of the internal buck low-side power MOSFET and the source of internal buck high-side power MOSFET. |
9 | PGND | PWR | Power ground of the device. |
10 | SW2 | PWR | The switching node pin of the boost side. It is connected to the drain of the internal boost low-side power MOSFET and the source of internal boost high-side power MOSFET. |
11 | VOUT | PWR | Output of the buck-boost converter. |
12 | ISP | I | Positive input of the current sense amplifier. An optional current sense resistor connected between the ISP pin and the ISN pin can limit the output current. If the sensed voltage reaches the current limit setting value in the register, a slow constant current control loop becomes active and starts to regulate the voltage between the ISP pin and the ISN pin. Connecting the ISP pin and the ISN pin together with the VOUT pin can disable the output current limit function. It must not be left open. |
13 | ISN | I | Negative input of the current sense amplifier. An optional current sense resistor connected between the ISP pin and the ISN pin can limit the output current. If the sensed voltage reaches the current limit setting value in the register, a slow constant current control loop becomes active and starts to regulate the voltage between the ISP pin and the ISN pin. Connecting the ISP pin and the ISN pin together with the VOUT pin can disable the output current limit function. It must not be left open. |
14 | FB/INT | I/O | When the device is set to use external output voltage feedback, connect to the center tap of a resistor divider to program the output voltage. When the device is set to use internal feedback, this pin is a fault indicator open-drain output. When there is an internal fault happening, this pin outputs logic low level. |
15 | COMP | O | Output of the internal error amplifier. Connect the loop compensation network between this pin and the AGND pin. |
16 | CDC | O | Voltage output proportional to the sensed voltage between the ISP pin and the ISN pin. Use a resistor between this pin and AGND to increase the output voltage to compensate voltage droop across the cable caused by the cable resistance. This pin can be left open if using internal cable voltage droop compensation. |
17 | AGND | - | Signal ground of the device. |
18 | VCC | O | Output of the internal regulator. A ceramic capacitor of more than 4.7μF is required between this pin and the AGND pin. |
19 | BOOT2 | O | Power supply for high-side MOSFET gate driver in boost side. A ceramic capacitor of 0.1µF must be connected between this pin and the SW2 pin. |
20 | BOOT1 | O | Power supply for high-side MOSFET gate driver in buck side. A ceramic capacitor of 0.1µF must be connected between this pin and the SW1 pin. |
21 | EXTVCC | I | Select the internal LDO or external 5V for VCC. When it is connected to VCC pin, logic high voltage or is left floating, select the internal LDO. When it is connected to logic low voltage, select the external 5V for VCC. |