JAJSUY7 May   2024 MCT8316A-Q1

PRODUCTION DATA  

  1.   1
  2. 特長
  3. アプリケーション
  4. 概要
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings Auto
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information
    5. 5.5 Electrical Characteristics
    6. 5.6 Characteristics of the SDA and SCL bus for Standard and Fast mode
  7. Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagram
    3. 6.3 Feature Description
      1. 6.3.1  Output Stage
      2. 6.3.2  Device Interface Modes
        1. 6.3.2.1 Interface - Control and Monitoring
        2. 6.3.2.2 I2C Interface
      3. 6.3.3  Step-Down Mixed-Mode Buck Regulator
        1. 6.3.3.1 Buck in Inductor Mode
        2. 6.3.3.2 Buck in Resistor mode
        3. 6.3.3.3 Buck Regulator with External LDO
        4. 6.3.3.4 AVDD Power Sequencing from Buck Regulator
        5. 6.3.3.5 Mixed Mode Buck Operation and Control
        6. 6.3.3.6 Buck Undervoltage Protection
        7. 6.3.3.7 Buck Overcurrent Protection
      4. 6.3.4  AVDD Linear Voltage Regulator
      5. 6.3.5  Charge Pump
      6. 6.3.6  Slew Rate Control
      7. 6.3.7  Cross Conduction (Dead Time)
      8. 6.3.8  SPEED Control
        1. 6.3.8.1 Analog-Mode Speed Control
        2. 6.3.8.2 PWM-Mode Speed Control
        3. 6.3.8.3 I2C based Speed Control
        4. 6.3.8.4 Frequency-Mode Speed Control
      9. 6.3.9  Starting the Motor Under Different Initial Conditions
        1. 6.3.9.1 Case 1 – Motor is Stationary
        2. 6.3.9.2 Case 2 – Motor is Spinning in the Forward Direction
        3. 6.3.9.3 Case 3 – Motor is Spinning in the Reverse Direction
      10. 6.3.10 Motor Start Sequence (MSS)
        1. 6.3.10.1 Initial Speed Detect (ISD)
        2. 6.3.10.2 Motor Resynchronization
        3. 6.3.10.3 Reverse Drive
        4. 6.3.10.4 Motor Start-up
          1. 6.3.10.4.1 Align
          2. 6.3.10.4.2 Double Align
          3. 6.3.10.4.3 Initial Position Detection (IPD)
            1. 6.3.10.4.3.1 IPD Operation
            2. 6.3.10.4.3.2 IPD Release Mode
            3. 6.3.10.4.3.3 IPD Advance Angle
          4. 6.3.10.4.4 Slow First Cycle Startup
          5. 6.3.10.4.5 Open loop
          6. 6.3.10.4.6 Transition from Open to Closed Loop
      11. 6.3.11 Closed Loop Operation
        1. 6.3.11.1 120o Commutation
          1. 6.3.11.1.1 High-Side Modulation
          2. 6.3.11.1.2 Low-Side Modulation
          3. 6.3.11.1.3 Mixed Modulation
        2. 6.3.11.2 Variable Commutation
        3. 6.3.11.3 Lead Angle Control
        4. 6.3.11.4 Closed loop accelerate
      12. 6.3.12 Speed Loop
      13. 6.3.13 Input Power Regulation
      14. 6.3.14 Anti-Voltage Surge (AVS)
      15. 6.3.15 Output PWM Switching Frequency
      16. 6.3.16 Fast Start-up (< 50 ms)
        1. 6.3.16.1 BEMF Threshold
        2. 6.3.16.2 Dynamic Degauss
      17. 6.3.17 Fast Deceleration
      18. 6.3.18 Active Demagnetization
        1. 6.3.18.1 Active Demagnetization in action
      19. 6.3.19 Motor Stop Options
        1. 6.3.19.1 Coast (Hi-Z) Mode
        2. 6.3.19.2 Recirculation Mode
        3. 6.3.19.3 Low-Side Braking
        4. 6.3.19.4 High-Side Braking
        5. 6.3.19.5 Active Spin-Down
      20. 6.3.20 FG Configuration
        1. 6.3.20.1 FG Output Frequency
        2. 6.3.20.2 FG Open-Loop and Lock Behavior
      21. 6.3.21 Protections
        1. 6.3.21.1  VM Supply Undervoltage Lockout
        2. 6.3.21.2  AVDD Undervoltage Lockout (AVDD_UV)
        3. 6.3.21.3  BUCK Undervoltage Lockout (BUCK_UV)
        4. 6.3.21.4  VCP Charge Pump Undervoltage Lockout (CPUV)
        5. 6.3.21.5  Overvoltage Protection (OVP)
        6. 6.3.21.6  Overcurrent Protection (OCP)
          1. 6.3.21.6.1 OCP Latched Shutdown (OCP_MODE = 00b)
          2. 6.3.21.6.2 OCP Automatic Retry (OCP_MODE = 01b)
          3. 6.3.21.6.3 OCP Report Only (OCP_MODE = 10b)
          4. 6.3.21.6.4 OCP Disabled (OCP_MODE = 11b)
        7. 6.3.21.7  Buck Overcurrent Protection
        8. 6.3.21.8  Cycle-by-Cycle (CBC) Current Limit (CBC_ILIMIT)
          1. 6.3.21.8.1 CBC_ILIMIT Automatic Recovery next PWM Cycle (CBC_ILIMIT_MODE = 000xb)
          2. 6.3.21.8.2 CBC_ILIMIT Automatic Recovery Threshold Based (CBC_ILIMIT_MODE = 001xb)
          3. 6.3.21.8.3 CBC_ILIMIT Automatic Recovery after 'n' PWM Cycles (CBC_ILIMIT_MODE = 010xb)
          4. 6.3.21.8.4 CBC_ILIMIT Report Only (CBC_ILIMIT_MODE = 0110b)
          5. 6.3.21.8.5 CBC_ILIMIT Disabled (CBC_ILIMIT_MODE = 0111b or 1xxxb)
        9. 6.3.21.9  Lock Detection Current Limit (LOCK_ILIMIT)
          1. 6.3.21.9.1 LOCK_ILIMIT Latched Shutdown (LOCK_ILIMIT_MODE = 00xxb)
          2. 6.3.21.9.2 LOCK_ILIMIT Automatic Recovery (LOCK_ILIMIT_MODE = 01xxb)
          3. 6.3.21.9.3 LOCK_ILIMIT Report Only (LOCK_ILIMIT_MODE = 1000b)
          4. 6.3.21.9.4 LOCK_ILIMIT Disabled (LOCK_ILIMIT_MODE = 1xx1b)
        10. 6.3.21.10 Thermal Warning (OTW)
        11. 6.3.21.11 Thermal Shutdown (TSD)
        12. 6.3.21.12 Motor Lock (MTR_LCK)
          1. 6.3.21.12.1 MTR_LCK Latched Shutdown (MTR_LCK_MODE = 00xxb)
          2. 6.3.21.12.2 MTR_LCK Automatic Recovery (MTR_LCK_MODE= 01xxb)
          3. 6.3.21.12.3 MTR_LCK Report Only (MTR_LCK_MODE = 1000b)
          4. 6.3.21.12.4 MTR_LCK Disabled (MTR_LCK_MODE = 1xx1b)
        13. 6.3.21.13 Motor Lock Detection
          1. 6.3.21.13.1 Lock 1: Abnormal Speed (ABN_SPEED)
          2. 6.3.21.13.2 Lock 2: Loss of Sync (LOSS_OF_SYNC)
          3. 6.3.21.13.3 Lock3: No-Motor Fault (NO_MTR)
        14. 6.3.21.14 IPD Faults
    4. 6.4 Device Functional Modes
      1. 6.4.1 Functional Modes
        1. 6.4.1.1 Sleep Mode
        2. 6.4.1.2 Standby Mode
        3. 6.4.1.3 Fault Reset (CLR_FLT)
    5. 6.5 External Interface
      1. 6.5.1 DRVOFF Functionality
      2. 6.5.2 DAC outputs
      3. 6.5.3 SOX Output
      4. 6.5.4 Oscillator Source
        1. 6.5.4.1 External Clock Source
      5. 6.5.5 External Watchdog
    6. 6.6 EEPROM access and I2C interface
      1. 6.6.1 EEPROM Access
        1. 6.6.1.1 EEPROM Write
        2. 6.6.1.2 EEPROM Read
      2. 6.6.2 I2C Serial Interface
        1. 6.6.2.1 I2C Data Word
        2. 6.6.2.2 I2C Write Operation
        3. 6.6.2.3 I2C Read Operation
        4. 6.6.2.4 Examples of MCT8316A-Q1 I2C Communication Protocol Packets
        5. 6.6.2.5 Internal Buffers
        6. 6.6.2.6 CRC Byte Calculation
    7. 6.7 EEPROM (Non-Volatile) Register Map
      1. 6.7.1 Algorithm_Configuration Registers
      2. 6.7.2 Fault_Configuration Registers
      3. 6.7.3 Hardware_Configuration Registers
      4. 6.7.4 Gate_Driver_Configuration Registers
    8. 6.8 RAM (Volatile) Register Map
      1. 6.8.1 Fault_Status Registers
      2. 6.8.2 System_Status Registers
      3. 6.8.3 Algo_Control Registers
      4. 6.8.4 Device_Control Registers
  8. Application and Implementation
    1. 7.1 Application Information
    2. 7.2 Typical Applications
      1. 7.2.1 Application Curves
        1. 7.2.1.1 Motor startup
        2. 7.2.1.2 120o and variable commutation
        3. 7.2.1.3 Faster startup time
        4. 7.2.1.4 Setting the BEMF threshold
        5. 7.2.1.5 Maximum speed
        6. 7.2.1.6 Faster deceleration
    3. 7.3 Power Supply Recommendations
      1. 7.3.1 Bulk Capacitance
    4. 7.4 Layout
      1. 7.4.1 Layout Guidelines
      2. 7.4.2 Layout Example
      3. 7.4.3 Thermal Considerations
        1. 7.4.3.1 Power Dissipation
  9. Device and Documentation Support
    1. 8.1 サポート・リソース
    2. 8.2 Trademarks
    3. 8.3 静電気放電に関する注意事項
    4. 8.4 用語集
  10. Revision History
  11. 10Mechanical, Packaging, and Orderable Information

Input Power Regulation

MCT8316A-Q1 provides an option of regulating the (input) power instead of motor speed - this input power regulation can be done in two modes, namely, closed loop power control and power limit control. Input power regulation (instead of motor speed) mode is selected by setting CLOSED_LOOP_MODE to 10b. This should be accompanied by setting CONST_POWER_MODE to 01b for closed loop power control or to 10b for power limit control. In either of the power regulation modes, the maximum power that MCT8316A-Q1 can draw from the DC input supply is set by MAX_POWER - the power reference (POWER_REF in Figure 6-32) varies as function of the duty command input (DUTY CMD) and MAX_POWER as given by Equation 7. The hysteresis band for the power reference is set by CONST_POWER_LIMIT_HYST. In both the power regulation modes, the minimum power reference is set by MIN_DUTY x MAX_POWER.

Equation 7. POWER_REF = DUTY CMD x MAX_POWER

In both the power regulation modes, MCT8316A-Q1 uses the same PI controller parameters as in the speed loop mode. Kp and Ki coefficients are configured through SPD_POWER_KP and SPD_POWER_KI. The PI controller output upper (VMAX) and lower bound (VMIN) saturation limits are configured through SPD_POWER_V_MAX and SPD_POWER_V_MIN respectively. The key difference between closed loop power control and power limit control is in the when the PI controller decides the DUTY OUT (see Figure 6-13) applied to FETs. In closed loop power control, DUTY OUT is always equal to POWER_PI_OUT from the PI controller output in Figure 6-32. However, in power limit control, the PI controller decides the DUTY OUT only if POWER_MEAS > POWER_REF + CONST_POWER_LIMIT_HYST. If POWER_MEAS < POWER_REF + CONST_POWER_LIMIT_HYST, the PI controller is not used and DUTY OUT is equal to DUTY CMD. Essentially, in closed loop power control, input power is always actively regulated to POWER_REF whereas, in power limit control, input power is only limited to POWER_REF and not actively regulated to POWER_REF. When output of the power PI loop saturates, the integrator is disabled to prevent integral wind-up.

MCT8316A-Q1 Power RegulationFigure 6-32 Power Regulation