JAJSVI5 October   2024 DRV8376

ADVANCE INFORMATION  

  1.   1
  2. 特長
  3. アプリケーション
  4. 概要
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 SPI Timing Requirements
    7. 6.7 SPI Slave Mode Timings
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1  Output Stage
      2. 7.3.2  Control Modes
        1. 7.3.2.1 6x PWM Mode (PWM_MODE = 00b or 01b or MODE_SR Pin Tied to AGND or in Hi-Z)
        2. 7.3.2.2 3x PWM Mode (xPWM_MODE = 10b or 11b or MODE_SR Pin is Connected to GVDD or to GVDD with RMODE)
      3. 7.3.3  Device Interface Modes
        1. 7.3.3.1 Serial Peripheral Interface (SPI)
        2. 7.3.3.2 Hardware Interface
      4. 7.3.4  AVDD and GVDD Linear Voltage Regulator
      5. 7.3.5  Charge Pump
      6. 7.3.6  Slew Rate Control
      7. 7.3.7  Cross Conduction (Dead Time)
      8. 7.3.8  Propagation Delay
      9. 7.3.9  Pin Diagrams
        1. 7.3.9.1 Logic Level Input Pin (Internal Pulldown)
        2. 7.3.9.2 Logic Level Input Pin (Internal Pullup)
        3. 7.3.9.3 Open Drain Pin
        4. 7.3.9.4 Push Pull Pin
        5. 7.3.9.5 Four Level Input Pin
      10. 7.3.10 Current Sense Amplifiers
        1. 7.3.10.1 Current Sense Amplifier Operation
      11. 7.3.11 Active Demagnetization
        1. 7.3.11.1 Automatic Synchronous Rectification Mode (ASR Mode)
          1. 7.3.11.1.1 Automatic Synchronous Rectification in Commutation
          2. 7.3.11.1.2 Automatic Synchronous Rectification in PWM Mode
        2. 7.3.11.2 Automatic Asynchronous Rectification Mode (AAR Mode)
      12. 7.3.12 Cycle-by-Cycle Current Limit
        1. 7.3.12.1 Cycle by Cycle Current Limit with 100% Duty Cycle Input
      13. 7.3.13 Protections
        1. 7.3.13.1 VM Supply Undervoltage Lockout (RESET)
        2. 7.3.13.2 AVDD Undervoltage Protection (AVDD_UV)
        3. 7.3.13.3 GVDD Undervoltage Lockout (GVDD_UV)
        4. 7.3.13.4 VCP Charge Pump Undervoltage Lockout (CPUV)
        5. 7.3.13.5 Overvoltage Protections (OV)
        6. 7.3.13.6 Overcurrent Protection (OCP)
          1. 7.3.13.6.1 OCP Latched Shutdown (OCP_MODE = 00b)
          2. 7.3.13.6.2 OCP Automatic Retry (OCP_MODE = 01b)
          3. 7.3.13.6.3 OCP Report Only (OCP_MODE = 10b)
          4. 7.3.13.6.4 OCP Disabled (OCP_MODE = 11b)
        7. 7.3.13.7 Thermal Warning (OTW)
        8. 7.3.13.8 Thermal Shutdown (OTS)
    4. 7.4 Device Functional Modes
      1. 7.4.1 Functional Modes
        1. 7.4.1.1 Sleep Mode
        2. 7.4.1.2 Operating Mode
        3. 7.4.1.3 Fault Reset (CLR_FLT or nSLEEP Reset Pulse)
      2. 7.4.2 DRVOFF functionality
    5. 7.5 SPI Communication
      1. 7.5.1 Programming
        1. 7.5.1.1 SPI Format
    6. 7.6 Register Map
      1. 7.6.1 STATUS Registers
      2. 7.6.2 CONTROL Registers
  9. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Power Supply Recommendations
      1. 8.2.1 Bulk Capacitance
    3. 8.3 Layout
      1. 8.3.1 Layout Guidelines
      2. 8.3.2 Layout Example
      3. 8.3.3 Thermal Considerations
        1. 8.3.3.1 Power Dissipation
  10. Device and Documentation Support
    1. 9.1 Documentation Support
    2. 9.2 サポート・リソース
    3. 9.3 Trademarks
    4. 9.4 静電気放電に関する注意事項
    5. 9.5 用語集
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information
    1. 11.1 Package Option Addendum
    2. 11.2 Tape and Reel Information

Electrical Characteristics

TJ = –40°C to +150°C, VVM = 4.5 to 65 V (unless otherwise noted). Typical limits apply for TA = 25°C, VVM = 24 V
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
POWER SUPPLIES
IVMQ VM sleep mode current VVM > 6V, nSLEEP = 0, TA = 25 °C 1.5 µA
nSLEEP = 0 2.5 µA
IVMS VM standby mode current
 
VVM > 6 V, nSLEEP = 1, INHx = INLx = 0, SPI = 'OFF', TA = 25 °C 6.6 mA
nSLEEP = 1, INHx = INLx = 0, SPI = 'OFF' 6.6 mA
IVM VM operating mode current
 
VVM > 6 V, nSLEEP = 1, fPWM = 20 kHz 8.5 mA
 nSLEEP =1, fPWM = 20 kHz 8.5 mA
nSLEEP =1, fPWM =100 kHz 11 mA
VGVDD Analog regulator voltage 0 mA ≤ IGVDD ≤ 30 mA; (External Load); VM > 6V 4.75 5 5.25 V
VGVDD Analog regulator voltage 0 mA ≤ IGVDD ≤ 30 mA; (External Load); VM = 4.5V 3.7 4.5 V
VAVDD Analog regulator voltage 0 mA ≤ IAVDD ≤ 30 mA; (External Load) 3.1 3.3 3.465 V
IGVDD External analog regulator load IAVDD = 0 mA 30 mA
IAVDD External analog regulator load IGVDD = 0 mA 30 mA
VVCP Charge pump regulator voltage VCP with respect to VM 4 5 6 V
tWAKE Wakeup time VVM > VUVLO, nSLEEP = 1 to outputs ready and nFAULT released 5.5 ms
tSLEEP Sleep Pulse time nSLEEP = 0 period to enter sleep mode 120 µs
tRST Reset Pulse time nSLEEP = 0 period to reset faults 20 40 µs
LOGIC-LEVEL INPUTS (DRVOFF, INHx, INLx, nSLEEP, SCLK, SDI, OCP)
VIL Input logic low voltage 0 0.6 V
VIH Input logic high voltage nSLEEP 1.6 5.5 V
Other Pins 1.5 5.5 V
VHYS Input logic hysteresis nSLEEP 250 mV
Other PIns 300 mV
IIL Input logic low current VPIN (Pin Voltage) = 0 V –1 1 µA
IIH Input logic high current nSLEEP, VPIN (Pin Voltage) = 5 V 15 35 µA
IIH Input logic high current Other pins, VPIN (Pin Voltage) = 5 V 30 75 µA
RPD Input pulldown resistance nSLEEP 150 200 300
Other pins 70 100 130
tGED Deglitch time DRVOFF pin 0.8 1 1.2 µs
CID Input capacitance 30 pF
LOGIC-LEVEL INPUTS (nSCS)
VIL Input logic low voltage 0 0.6 V
VIH Input logic high voltage 1.5 5.5 V
VHYS Input logic hysteresis 300 mV
IIL Input logic low current VPIN (Pin Voltage) = 0 V 75 µA
IIH Input logic high current VPIN (Pin Voltage) = 5 V –1 25 µA
RPU Input pullup resistance 80 100 130
CID Input capacitance 30 pF
FOUR-LEVEL INPUTS (GAIN, MODE_SR, SLEW)
VL1 Input mode 1 voltage Tied to AGND 0 0.2*GVDD V
VL2 Input mode 2 voltage Hi-Z 0.27*GVDD 0.5*GVDD 0.55*GVDD V
VL3 Input mode 3 voltage 47 kΩ +/- 5% tied to GVDD 0.6*GVDD 0.76*GVDD 0.9*GVDD V
VL4 Input mode 4 voltage Tied to GVDD 0.94*GVDD GVDD V
RPU Input pullup resistance To GVDD 80 100 120
RPD Input pulldown resistance To AGND 80 100 120
OPEN-DRAIN OUTPUTS (nFAULT)
VOL Output logic low voltage IOD = 5 mA 0.4 V
IOH Output logic high current VOD = 5 V –1 1 µA
COD Output capacitance 30 pF
PUSH-PULL OUTPUTS (SDO)
VOL Output logic low voltage IOP = 5 mA 0 0.4 V
VOH Output logic high voltage IOP = 5 mA, SDO_VSEL = 0 2.6 AVDD V
VOH Output logic high voltage IOP = 5 mA, SDO_VSEL = 1, VVM > 6V 4 GVDD V
IOL Output logic low leakage current VOP = 0 V –1 1 µA
IOH Output logic high leakage current VOP = 5 V –1 1 µA
COD Output capacitance 30 pF
DRIVER OUTPUTS
RDS(ON) Total MOSFET on resistance (High-side + Low-side) VVM > 6 V, IOUT = 1 A, TA = 25°C 400 505
VVM < 6 V, IOUT = 1 A, TA = 25°C 407
VVM > 6 V, IOUT = 1 A, TJ = 150 °C 690
VVM < 6 V, IOUT = 1 A, TJ = 150 °C 705
SR Phase pin slew rate switching low to high (Rising from 20 % to 80 %)
 
VVM = 24 V, SLEW = 00b or SLEW pin tied to AGND, IOUTx = 1 A 1100 V/us
VVM = 24 V, SLEW = 01b or SLEW pin to Hi-Z, IOUTx = 1 A 500 V/us
VVM = 24 V, SLEW = 10b or SLEW pin to 47 kΩ +/- 5% to GVDD, IOUTx = 1 A 250 V/us
VVM = 24 V, SLEW = 11b or SLEW pin tied to GVDD, IOUTx = 1 A 50 V/us
SR Phase pin slew rate switching high to low (Falling from 80 % to 20 %
 
VVM = 24 V, SLEW = 00b or SLEW pin tied to AGND, IOUTx = 1 A 1100 V/us
VVM = 24 V, SLEW = 01b or SLEW pin to Hi-Z, IOUTx = 1 A 500 V/us
VVM = 24 V, SLEW = 10b or SLEW pin to 47 kΩ +/- 5% to GVDD, IOUTx = 1 A 250 V/us
VVM = 24 V, SLEW = 11b or SLEW pin tied to GVDD, IOUTx = 1 A 50 V/us
ILEAK Leakage current on OUTx VOUTx = VVM, nSLEEP = 1 2 mA
Leakage current on OUTx  VOUTx = 0 V, nSLEEP = 1 1 µA
tDEAD Output dead time (high to low / low to high) VVM = 24 V, SLEW = 00b or SLEW pin tied to AGND, HS driver ON to LS driver OFF 65 ns
VVM = 24 V, SLEW = 01b or SLEW pin to Hi-Z, HS driver ON to LS driver OFF 100 ns
VVM = 24 V, SLEW = 10b or SLEW pin to 47 kΩ +/- 5% to GVDD, HS driver ON to LS driver OFF 100 ns
VVM = 24 V, SLEW = 11b or SLEW pin tied to GVDD, HS driver ON to LS driver OFF 250 ns
tPD Propagation delay (high-side / low-side ON/OFF) VVM = 24 V, INHx = 1 to OUTx transisition, SLEW = 00b or SLEW pin tied to AGND 35 ns
VVM = 24 V, INHx = 1 to OUTx transisition, SLEW = 01b or SLEW pin to Hi-Z 40 ns
VVM = 24 V, INHx = 1 to OUTx transisition, SLEW = 10b or SLEW pin to 47 kΩ +/- 5% to GVDD 45 ns
VVM = 24 V, INHx = 1 to OUTx transisition, SLEW = 11b or SLEW pin tied to GVDD 1200 ns
tMIN_PULSE Minimum output pulse width
SLEW = 00b or SLEW pin tied to AGND
 
100 ns
CURRENT SENSE AMPLIFIER
GCSA Current sense gain (SPI Device) CSA_GAIN = 00 0.4 V/A
GCSA Current sense gain (SPI Device) CSA_GAIN = 01 1 V/A
GCSA Current sense gain (SPI Device) CSA_GAIN = 02 2.5 V/A
GCSA Current sense gain (SPI Device) CSA_GAIN = 03 5 V/A
GCSA Current sense gain (HW Device) GAIN pin tied to AGND 0.4 V/A
GCSA Current sense gain (HW Device) GAIN pin to Hi-Z 1 V/A
GCSA Current sense gain (HW Device) GAIN pin to 47 kΩ ± 5% to GVDD 2.5 V/A
GCSA Current sense gain (HW Device) GAIN pin tied to GVDD 5 V/A
GCSA_ERR Current sense gain error TJ = 25°C, LS FET Current < 2A ±5 %
TJ = 25°C, LS FET Current > 2A (Current direction from OUTx to PGND) ±5 %
LS FET Current < 2A ±5 %
2A < LS FET Current  < 4A; (Current direction from OUTx to PGND) ±5 %
IMATCH Current sense gain error matching between phases A, B and C TA = 25°C ±5 %
±5 %
FSPOS Full scale positive current measurement Current direction from PGND to OUTx in the LS FET, VREF = 3.3 V 2 A
FSNEG Full scale negative current measurement Current direction from OUTx to PGND in the LS FET, VREF = 3.3 V –3.5 A
VLINEAR SOX output voltage linear range 0.25 VREF-0.25 V
IOFFSET Current sense offset TJ = 25°C, Phase current = 0 A ±10 mA
tSET Settling time to ±1%, 30 pF Step on SOX = 1.2 V 1 μs
tCSA_ON_DELAY Delay from INLx turn on to current sense amplifier turn on  SR = 1000 V/μs or 500 V/μs or 250 V/μs 500 ns
tCSA_ON_DELAY Delay from INLx turn on to current sense amplifier turn on SR = 50 V/μs 4300 ns
VDRIFT Drift offset Phase current = 0 A –160 160 µA/℃
IVREF VREF input current VREF = 3.0 V, nSLEEP = 0 or 1 25 µA
PULSE-BY-PULSE CURRENT LIMIT
VLIM Voltage on ILIMIT pin for cycle by cycle current limit VREF/2 VREF - 0.25 V
VLIM_DIS Voltage on ILIMIT pin for disabling cycle by cycle current limit VREF GVDD V
ILIMIT Current limit corresponding to VLIM pin voltage range 0 4 A
ILIM_AC Current limit accuracy VREF = 3.3V, ILIMIT > 1A ±6 %
ILIM_AC Current limit accuracy VREF = 3.3V, 0.5 A < ILIMIT < 1A ±10 %
tBLANK Cycle by cycle current limit blank time SLEW = 00b or 01b or 10b, ILIM_BLANK_SEL = 00b, HW variant 1.75 µs
tBLANK Cycle by cycle current limit blank time SLEW = 00b or 01b or 10b, ILIM_BLANK_SEL = 01b 2.25 µs
tBLANK Cycle by cycle current limit blank time SLEW = 00b or 01b or 10b, ILIM_BLANK_SEL = 10b 2.75 µs
tBLANK Cycle by cycle current limit blank time SLEW = 00b or 01b or 10b, ILIM_BLANK_SEL = 11b 3.75 µs
tBLANK Cycle by cycle current limit blank time SLEW = 11b, ILIM_BLANK_SEL = 00b, HW variant 5.5 µs
tBLANK Cycle by cycle current limit blank time SLEW = 11b, ILIM_BLANK_SEL = 01b 6 µs
tBLANK Cycle by cycle current limit blank time SLEW = 11b, ILIM_BLANK_SEL = 10b 6.5 µs
tBLANK Cycle by cycle current limit blank time SLEW = 11b, ILIM_BLANK_SEL = 11b 7.5 µs
PROTECTION CIRCUITS
VUVLO Supply undervoltage lockout (UVLO) VM rising 4.2 4.35 4.5 V
VM falling 4.0 4.15 4.3 V
VUVLO_HYS Supply undervoltage lockout hysteresis Rising to falling threshold 200 mV
tUVLO Supply undervoltage deglitch time 3 6 10 µs
VOVP Supply overvoltage protection (OVP)
(SPI Device)
Supply rising, OVP_EN = 1, OVP_SEL = 0 60 62.5 65 V
Supply falling, OVP_EN = 1, OVP_SEL = 0 58 61 63.5 V
Supply rising, OVP_EN = 1, OVP_SEL = 1 32.5 34 35 V
Supply falling, OVP_EN = 1, OVP_SEL = 1 32 33 34 V
VOVP_HYS Supply overvoltage protection (OVP)
(SPI Device)
Rising to falling threshold, OVP_SEL = 1 0.8 V
Rising to falling threshold, OVP_SEL = 0 1.45 V
tOVP Supply overvoltage deglitch time 2.5 6.5 12 µs
VCPUV Charge pump undervoltage lockout (above VM) Supply rising 2.1 2.7 3.2 V
Supply falling 1.8 2.45 2.95 V
VCPUV_HYS Charge pump UVLO hysteresis Rising to falling threshold 250 mV
VAVDD_UV Analog regulator undervoltage lockout Supply rising 2.7 2.85 3 V
Supply falling 2.5 2.65 2.8 V
VAVDD_UV_HYS Analog regulator undervoltage lockout hysteresis Rising to falling threshold 200 mV
VGVDD_UV GVDD regulator undervoltage lockout Supply rising 3.1 3.3 3.5 V
VGVDD_UV GVDD regulator undervoltage lockout Supply falling 2.9 3.1 3.3 V
VGVDD_UV_HYS Analog regulator undervoltage lockout hysteresis Rising to falling threshold 190 mV
IOCP Overcurrent protection trip point (SPI Device) OCP_LVL = 00b or 01b 4.5 A
IOCP Overcurrent protection trip point (SPI Device) OCP_LVL = 10b or 11b 2 A
IOCP Overcurrent protection trip point (HW Device) OCP pin tied to AGND or OCP pin HiZ 4.5 A
IOCP Overcurrent protection trip point (HW Device) OCP tied to GVDD 2 A
tOCP Overcurrent protection deglitch time
(SPI Device)
OCP_DEG = 00b 0.2 0.6 1.2 µs
OCP_DEG = 01b 0.6 1.25 1.8 µs
OCP_DEG = 10b 1 1.6 2.5 µs
OCP_DEG = 11b 1.4 2 3 µs
Overcurrent protection deglitch time
(HW Device)
0.6 1.25 1.8 µs
tRETRY Overcurrent protection retry time
(SPI Device)
OCP_RETRY = 0 4 5 6 ms
OCP_RETRY = 1 425 500 575 ms
tRETRY Overcurrent protection retry time
(HW Device)
4 5 6 ms
TOTW Thermal warning temperature Die temperature (TJ) 160 170 180 °C
TOTW_HYS Thermal warning hysteresis Die temperature (TJ) 25 30 35 °C
TTSD Thermal shutdown temperature  Die temperature (TJ) 175 185 195 °C
TTSD_HYS Thermal shutdown hysteresis  Die temperature (TJ) 25 30 35 °C