JAJU459B December   2017  – November 2022

 

  1.   概要
  2.   リソース
  3.   特長
  4.   アプリケーション
  5.   5
  6. 1System Description
    1. 1.1 Key System Specifications
  7. 2System Overview
    1. 2.1 Block Diagram
    2. 2.2 Design Considerations
      1. 2.2.1 Conditions of Use: Assumption
        1. 2.2.1.1 Generic Assumptions
        2. 2.2.1.2 Specific Assumptions
      2. 2.2.2 Diagnostics Coverage
        1. 2.2.2.1 Dual-Channel Monitoring
        2. 2.2.2.2 Checking ISO1211 Functionality With MCU (SIL1)
        3. 2.2.2.3 Checking TPS22919 Functionality With MCU (SIL1)
        4. 2.2.2.4 Checking TPS27S100 Functionality With MCU (SIL1)
        5. 2.2.2.5 Optional Monitoring Using RDY Pin of ISO5452, ISO5852S or UCC21750 Integrated Analog-to-PWM Isolated Sensor
      3. 2.2.3 Drive State
    3. 2.3 Highlighted Products
      1. 2.3.1 ISO1211
      2. 2.3.2 TPS27S100
      3. 2.3.3 TPS22919
      4. 2.3.4 ISO5852S, ISO5452
    4. 2.4 System Design Theory
      1. 2.4.1 Digital Input Receiver for STO
      2. 2.4.2 STO_1 Signal Flow Path for Controlling VCC1
      3. 2.4.3 STO_2 Signal Flow Path
        1. 2.4.3.1 High-Side Switch for Controlling Secondary-Side Supply Voltage of Gate Driver
        2. 2.4.3.2 Powering up Secondary Side: VCC2 of Gate Driver
      4. 2.4.4 Gate Driver Design
      5. 2.4.5 STO_FB Signal Flow Path
  8. 3Hardware, Software, Testing Requirements, and Test Results
    1. 3.1 Getting Started Hardware
      1. 3.1.1 PCB Overview
    2. 3.2 Testing and Results
      1. 3.2.1 Logic High and Logic Low STO Thresholds
      2. 3.2.2 Validation of STO1 Signal
        1. 3.2.2.1 Propagation of STO1 to VCC1 of Gate Driver
        2. 3.2.2.2 1-ms STO Pulse Rejection
        3. 3.2.2.3 Diagnostic Pulses From MCU Interface
      3. 3.2.3 Validation of STO2 Signals
        1. 3.2.3.1 Propagation of STO2 to VCC2 of Gate Driver
        2. 3.2.3.2 1-ms Pulse Rejection
        3. 3.2.3.3 Diagnostic Pulses From MCU
        4. 3.2.3.4 Inrush Current Measurement
      4. 3.2.4 3.3-V Voltage Rail From Switcher
      5. 3.2.5 60-V Input Voltage and Reverse Polarity Protection
      6. 3.2.6 Validation of Trip Zone Functionality
  9. 4Design Files
    1. 4.1 Schematics
    2. 4.2 Bill of Materials
    3. 4.3 Layer Plots
    4. 4.4 Altium Project
    5. 4.5 Gerber Files
    6. 4.6 Assembly Drawings
  10. 5Related Documentation
    1. 5.1 Trademarks
  11. 6About the Author
  12. 7Recognition
  13. 8Revision History

Checking ISO1211 Functionality With MCU (SIL1)

As previously addressed, the PLC sends OSSD test pulses with 1-ms logic low to the input of the ISO1211 device. The signals MCU_STO1_In and MCU_STO2_In from the corresponding ISO1211 outputs are periodically monitored to ensure that the digital isolator is functioning properly. If no logic low is detected for more than 4 ms, the MCU concludes the corresponding ISO1211 output is stuck high or shorted to VCC and puts the 3-phase IGBT inverter into a safe state by driving both diagnostic pulses MCU_Diag_Ctrl_Out1 and MCU_Diag_Ctrl_Out2 continuously low. This in turns will disable the six gate drivers, the six IGBT will be turned off and the drive will enter the safe state.