JAJU680A January   2019  – July 2022

 

  1.   概要
  2.   Resources
  3.   特長
  4.   アプリケーション
  5.   5
  6. 1System Description
    1. 1.1 Key System Specifications
  7. 2System Overview
    1. 2.1 Block Diagram
    2. 2.2 Design Considerations
      1. 2.2.1 Flow Measurement
      2. 2.2.2 ToF Measurement
        1. 2.2.2.1 ADC-Based Acquisition Process
        2. 2.2.2.2 Ultrasonic Sensing Flow-Metering Library
      3. 2.2.3 Low-Power Design
        1. 2.2.3.1 Energy-Efficient Software
        2. 2.2.3.2 Optimized Hardware Design
        3. 2.2.3.3 Efficient Use of FRAM
        4. 2.2.3.4 The LEA Advantage
    3. 2.3 Highlighted Products
      1. 2.3.1 MSP430FR6043
      2. 2.3.2 OPA836 and OPA838
      3. 2.3.3 TS5A9411
    4. 2.4 System Design Theory
      1. 2.4.1 Signal Processing for ToF
  8. 3Hardware, Software, Testing Requirements, and Test Results
    1. 3.1 Required Hardware and Software
      1. 3.1.1 Hardware
        1. 3.1.1.1 EVM430-FR6043
      2. 3.1.2 Software
        1. 3.1.2.1 MSP Driver Library (MSP DriverLib)
        2. 3.1.2.2 Ultrasonic Sensing Flow Metering Library
        3. 3.1.2.3 Application
          1. 3.1.2.3.1 Application Customization
          2. 3.1.2.3.2 LCD Stand-Alone Mode
        4. 3.1.2.4 USS Design Center (PC GUI)
      3. 3.1.3 Transducer and Meter
        1. 3.1.3.1 Frequency Characterization of Transducer and Meter
    2. 3.2 Testing and Results
      1. 3.2.1 Test Setup
        1. 3.2.1.1 Connecting Hardware
        2. 3.2.1.2 Building and Loading Software
          1. 3.2.1.2.1 Using Code Composer Studio IDE
          2. 3.2.1.2.2 Using IAR Embedded Workbench IDE
        3. 3.2.1.3 Executing Application
        4. 3.2.1.4 Configure Device and Observe Results Using GUI
        5. 3.2.1.5 Customization and Optimization
      2. 3.2.2 Test Results
        1. 3.2.2.1 Single-Shot Standard Deviation
        2. 3.2.2.2 Zero-Flow Drift
        3. 3.2.2.3 Absolute Time of Flight Measurements
        4. 3.2.2.4 Variability in Zero Flow Drift Across Transducers
        5. 3.2.2.5 Flow Measurements
        6. 3.2.2.6 Average Current Consumption
        7. 3.2.2.7 Memory Footprint
  9. 4Design and Documentation Support
    1. 4.1 Design Files
      1. 4.1.1 Schematics
      2. 4.1.2 Bill of Materials
      3. 4.1.3 PCB Layout Recommendations
        1. 4.1.3.1 Layout Prints
      4. 4.1.4 Altium Project
      5. 4.1.5 Gerber Files
      6. 4.1.6 Assembly Drawings
    2. 4.2 Software Files
    3. 4.3 Related Documentation
    4. 4.4 Terminology
    5. 4.5 Trademarks
    6. 4.6 サポート・リソース
  10. 5About the Authors
  11. 6Revision History

The LEA Advantage

The TIDM-02003 design also makes efficient use of the LEA available in the MSP430FR6043 MCU.

The LEA is a 16-bit hardware engine designed to perform signal processing, matrix multiplications, and other operations that involve vector-based signal processing, such as FIR, IIR, and FFT, without CPU intervention. Efficient use of this module can result in improvements of up to 36.4 times for typical math intensive operations.

The LEA is used by the Ultrasonic Sensing Flow Metering Library to accelerate all vector operations in its proprietary algorithms. The LEA not only reduces the processing time of many operations, but LEA also allows the CPU to go into a low-power state.

For more information about the LEA, see Low-Energy Accelerator (LEA) Frequently Asked Questions and Benchmarking the Signal Processing Capabilities of the Low-Energy Accelerator on MSP430 MCUs.