JAJU802A January   2022  – October 2022

 

  1.   概要
  2.   リソース
  3.   特長
  4.   アプリケーション
  5.   5
  6. 1System Description
    1. 1.1 Key System Specifications
  7. 2System Overview
    1. 2.1 Block Diagram
    2. 2.2 Design Considerations
    3. 2.3 Highlighted Products
      1. 2.3.1 TMS320F2800137
      2. 2.3.2 TMS320F280025C
      3. 2.3.3 TMS320F280039C
      4. 2.3.4 UCC28740
      5. 2.3.5 UCC27517
      6. 2.3.6 TLV9062
      7. 2.3.7 TLV76733
    4. 2.4 System Design Theory
      1. 2.4.1 Interleaved PFC
        1. 2.4.1.1 Full Bridge Diode Rectifier Rating
        2. 2.4.1.2 Inductor Ratings
        3. 2.4.1.3 AC Voltage Sensing
        4. 2.4.1.4 DC Link Voltage Sensing
        5. 2.4.1.5 Bus Current Sensing
        6. 2.4.1.6 DC Link Capacitor Rating
        7. 2.4.1.7 MOSFET Ratings
        8. 2.4.1.8 Diode Ratings
      2. 2.4.2 Three-Phase PMSM Drive
        1. 2.4.2.1 Field Oriented Control of PM Synchronous Motor
        2. 2.4.2.2 Sensorless Control of PM Synchronous Motor
          1. 2.4.2.2.1 Enhanced Sliding Mode Observer with Phase Locked Loop
            1. 2.4.2.2.1.1 Mathematical Model and FOC Structure of an IPMSM
            2. 2.4.2.2.1.2 Design of ESMO for the IPMSM
            3. 2.4.2.2.1.3 Rotor Position and Speed Estimation with PLL
        3. 2.4.2.3 Field Weakening (FW) and Maximum Torque Per Ampere (MTPA) Control
        4. 2.4.2.4 Compressor Drive with Automatic Vibration Compensation
        5. 2.4.2.5 Fan Drive with Flying Start
        6. 2.4.2.6 Hardware Prerequisites for Motor Drive
          1. 2.4.2.6.1 Motor Current Feedback
            1. 2.4.2.6.1.1 Current Sensing with Three-Shunt
            2. 2.4.2.6.1.2 Current Sensing with Single-Shunt
          2. 2.4.2.6.2 Motor Voltage Feedback
  8. 3Hardware, Software, Testing Requirements, and Test Results
    1. 3.1 Getting Started Hardware
      1. 3.1.1 Hardware Board Overview
      2. 3.1.2 Test Conditions
      3. 3.1.3 Test Equipment Required for Board Validation
      4. 3.1.4 Test Setup
    2. 3.2 Getting Started Firmware
      1. 3.2.1 Download and Install Software Required for Board Test
      2. 3.2.2 Opening Project Inside CCS
      3. 3.2.3 Project Structure
    3. 3.3 Test Procedure
      1. 3.3.1 Build Level 1: CPU and Board Setup
        1. 3.3.1.1 Start CCS and Open Project
        2. 3.3.1.2 Build and Load Project
        3. 3.3.1.3 Setup Debug Environment Windows
        4. 3.3.1.4 Run the Code
      2. 3.3.2 Build Level 2: Open Loop Check with ADC Feedback
        1. 3.3.2.1 Start CCS and Open Project
        2. 3.3.2.2 Build and Load Project
        3. 3.3.2.3 Setup Debug Environment Windows
        4. 3.3.2.4 Run the Code
      3. 3.3.3 Build Level 3: Closed Current Loop Check
        1. 3.3.3.1 Start CCS and Open Project
        2. 3.3.3.2 Build and Load Project
        3. 3.3.3.3 Setup Debug Environment Windows
        4. 3.3.3.4 Run the Code
      4. 3.3.4 Build Level 4: Full PFC and Motor Drive Control
        1. 3.3.4.1  Start CCS and Open Project
        2. 3.3.4.2  Build and Load Project
        3. 3.3.4.3  Setup Debug Environment Windows
        4. 3.3.4.4  Run the Code
        5. 3.3.4.5  Run the System
        6. 3.3.4.6  Tuning Motor Drive FOC Parameters
        7. 3.3.4.7  Tuning PFC Parameters
        8. 3.3.4.8  Tuning Field Weakening and MTPA Control Parameters
        9. 3.3.4.9  Tuning Flying Start Control Parameters
        10. 3.3.4.10 Tuning Vibration Compensation Parameters
        11. 3.3.4.11 Tuning Current Sensing Parameters
    4. 3.4 Test Results
      1. 3.4.1 Performance Data and Curves
      2. 3.4.2 Functional Waveforms
      3. 3.4.3 Transient Waveforms
      4. 3.4.4 MCU CPU Load, Memory and Peripherals Usage
        1. 3.4.4.1 CPU Load for Full Implementation
        2. 3.4.4.2 Memory Usage
        3. 3.4.4.3 Peripherals Usage
    5. 3.5 Migrate Firmware to a New Hardware Board
      1. 3.5.1 Configure the PWM, CMPSS, and ADC Modules
      2. 3.5.2 Setup Hardware Board Parameters
      3. 3.5.3 Configure Faults Protection Parameters
      4. 3.5.4 Setup Motor Electrical Parameters
      5. 3.5.5 Setup PFC Control Parameters
  9. 4Design and Documentation Support
    1. 4.1 Design Files
      1. 4.1.1 Schematics
      2. 4.1.2 Bill of Materials
      3. 4.1.3 Altium Project
      4. 4.1.4 Gerber Files
      5. 4.1.5 PCB Layout Guidelines
    2. 4.2 Software Files
    3. 4.3 Documentation Support
    4. 4.4 サポート・リソース
    5. 4.5 Trademarks
  10. 5Terminology
  11. 6Revision History
Mathematical Model and FOC Structure of an IPMSM

The sensorless FOC structure for an IPMSM is illustrated in Figure 2-16. In this system, the eSMO is used for achieving the sensorless control an IPMSM system, and the eSMO model is designed by utilizing the back EMF model together with a PLL model for estimating the rotor position and speed.

Figure 2-16 Sensorless FOC Structure of an IPMSM System

An IPMSM consists of a three-phase stator winding (a, b, c axes), and permanent magnets (PM) rotor for excitation. The motor is controlled by a standard three-phase inverter. An IPMSM can be modeled by using phase a-b-c quantities. Through proper coordinate transformations, the dynamic PMSM models in the d-q rotor reference frame and the α-β stationary reference frame can be obtained. The relationship among these reference frames are illustrated in Equation 46. The dynamic model of a generic PMSM can be written in the d-q rotor reference frame as:

Equation 46. vdvq=Rs+pLd-ωeLqωeLdRs+pLqidiq+0ωeλpm

Where vd and vq are the q-axis and d-axis stator terminal voltages, respectively; id and iq are the d-axis and q-axis stator currents, respectively; Ld and Lq are the q-axis and d-axis inductances, respectively, p is the derivative operator, a short notation of ddt; λpm is the flux linkage generated by the permanent magnets, Rs is the resistance of the stator windings; and ωe is the electrical angular velocity of the rotor.

Figure 2-17 Definitions of Coordinate Reference Frames for PMSM Modeling

By using the inverse Park transformation as shown in Figure 2-17, the dynamics of the PMSM can be modeled in the α-β stationary reference frame as:

Equation 47. v α v β = R s + p L d ω e ( L d - L q ) - ω e ( L d - L q ) R s + p L q i α i β + e α e β

Where the e α and e β are components of extended electromotive force (EEMF) in the α-β axis and can be defined as:

Equation 48. e α e β = λ p m + L d - L q i d ω e - s i n ( θ e ) c o s ( θ e )
According to Equation 47 and Equation 48, the rotor position information can be decoupled from the inductance matrix by means of the equivalent transformation and the introduction of the EEMF concept, so that the EEMF is the only term that contains the rotor pole position information. And then the EEMF phase information can be directly used to realize the rotor position observation. Rewrite the IPMSM voltage equation Equation 47 as a state equation using the stator current as a state variable:

Equation 49. i˙αi˙β=1Ld-Rs-ωe(Ld-Lq)ωe(Ld-Lq)-Rsiαiβ+1LdVα-eαVβ-eβ
Since the stator current is the only physical quantity that can be directly measured, the sliding surface is selected on the stator current path:

Equation 50. S x = i ^ α - i α i ^ β - i β = i ~ α i ~ β
where i ^ α and i ^ β are the estimated currents, the superscript ^ indicates the estimated value, the superscript “˜” indicates the variable error which refers to the difference between the observed value and the actual measurement value.