JAJU833 November   2021 AWR2944

 

  1.   概要
  2.   リソース
  3.   特長
  4.   アプリケーション
  5.   5
  6. 1System Description
    1. 1.1 Why use Radar?
    2. 1.2 TI Corner Radar Design
    3. 1.3 Key System Specification
  7. 2System Overview
    1. 2.1 Block Diagram
    2. 2.2 Design Considerations
    3. 2.3 Highlighted Products
      1. 2.3.1 AWR2944 Single-Chip Radar Solution
      2. 2.3.2 AWR2944 Evaluation Module
    4. 2.4 System Design Theory
      1. 2.4.1  Antenna Configuration
      2. 2.4.2  Chirp Configuration and System Performance
      3. 2.4.3  Data Path
      4. 2.4.4  Chirp Timing
      5. 2.4.5  eDMA Configuration
      6. 2.4.6  Memory Allocation
      7. 2.4.7  DDMA
      8. 2.4.8  Empty Subband Based DDMA
      9. 2.4.9  RANSAC
      10. 2.4.10 Group Tracker
  8. 3Hardware, Software, Testing Requirements, and Test Results
    1. 3.1 Required Hardware and Software
      1. 3.1.1 Hardware
      2. 3.1.2 Software and GUI
    2. 3.2 Test Setup
    3. 3.3 Test Results
  9. 4Design and Documentation Support
    1. 4.1 Design Files
      1. 4.1.1 Schematics
      2. 4.1.2 BOM
    2. 4.2 Tools and Software
    3. 4.3 Documentation Support
    4. 4.4 サポート・リソース
    5. 4.5 Trademarks
  10. 5About the Author

Why use Radar?

Frequency-modulated continuous-wave (FMCW) radars allow the accurate measurement of distances and relative velocities of obstacles and other vehicles; therefore, radars are useful for autonomous vehicular applications (such as lane change assist and cross traffic alert) and car safety applications (autonomous breaking and collision avoidance). An important advantage of radars over camera and light-detection and ranging (LIDAR)-based systems is that radars are relatively immune to environmental conditions such as the effects of rain, dust, and smoke. Because FMCW radars transmit a specific signal (called a chirp) and process the reflections, they work in complete darkness and also bright daylight (radars are not affected by glare). When compared with ultrasound, radars typically have a much longer range and much faster signal transit times.