JAJU873 August   2020

 

  1.   概要
  2.   リソース
  3.   特長
  4.   アプリケーション
  5.   5
  6. 1 System Description
    1. 1.1 Medical Respiratory Systems
    2. 1.2 Respirator System Components
    3. 1.3 Key System Specifications
  7. 2System Overview
    1. 2.1 Block Diagram
    2. 2.2 Design Considerations
      1. 2.2.1 Brushless DC Motor (BLDC)
        1. 2.2.1.1 DRV8323RS BLDC Motor Driver Design Calculations
        2. 2.2.1.2 BLDC Motor Driver Circuit
      2. 2.2.2 Solenoid Valve Drivers
        1. 2.2.2.1 DRV8847 Solenoid Driver Design Calculations
        2. 2.2.2.2 Solenoid Driver Circuit
      3. 2.2.3 Power Tree Architecture
        1. 2.2.3.1 Input protection - overvoltage and reverse voltage
        2. 2.2.3.2 LM5122 Boost Design Calculations
        3. 2.2.3.3 LMR33630 Buck Design Calculations
        4. 2.2.3.4 Secondary Power Stage – TPS62840 3.3V Buck
        5. 2.2.3.5 Secondary Power Stage – TPS7A02 3.3V LDO
        6. 2.2.3.6 Power Tree Circuit
    3. 2.3 Highlighted Products
  8. 3Hardware, Software, Testing Requirements, and Test Results
    1. 3.1 Hardware and Software Requirements
    2. 3.2 Test Setup
      1. 3.2.1 Hardware Configuration
      2. 3.2.2 Software Configuration
    3. 3.3 Test Results
      1. 3.3.1 Motor Test Result
      2. 3.3.2 Valve Test Result
      3. 3.3.3 Power Tree Test Result
      4. 3.3.4 Key Test Summary
  9. 4Design and Documentation Support
    1. 4.1 Design Files
      1. 4.1.1 Schematics
      2. 4.1.2 BOM
    2. 4.2 Documentation Support
    3. 4.3 サポート・リソース
    4. 4.4 Trademarks
  10. 5About the Author

Secondary Power Stage – TPS7A02 3.3V LDO

The purpose of the LDO is to provide a low noise power rail (130 μVrms, BW = 10 Hz to 100 kHz) for the TMP1075 temperature sensors. Although the LDO is capable of sourcing up to 200 mA, the expected load is much less (<5 mA) since the temperature sensors are very low power devices.

The maximum TPS7A02 dropout for a 3.3 V output is 310 mV. The input voltage is 4 V from the DRV8323RS's integrated buck, which allows for up to 0.7 V of dropout.

A minimum output capacitance of 1 μF is required for stability. For this design, 1-μF, 10-V ceramic capacitors were selected for the input and output.