JAJU880 December   2022

 

  1.   概要
  2.   リソース
  3.   特長
  4.   アプリケーション
  5.   5
  6. 1System Description
  7. 2System Overview
    1. 2.1 Block Diagram
    2. 2.2 Design Considerations
      1. 2.2.1 Auxiliary Power Strategy
      2. 2.2.2 High-Side N-Channel MOSFET
      3. 2.2.3 Stacked AFE Communication
    3. 2.3 Highlighted Products
      1. 2.3.1 BQ76942
      2. 2.3.2 LM5168
      3. 2.3.3 ISO1640
      4. 2.3.4 TCAN1042HV
      5. 2.3.5 THVD2410
      6. 2.3.6 TPS7A25
      7. 2.3.7 MSP430FR2155
      8. 2.3.8 TMP61
      9. 2.3.9 TPD2E007
  8. 3Hardware, Software, Testing Requirements, and Test Results
    1. 3.1 Hardware Requirements
    2. 3.2 Test Setup
    3. 3.3 Test Results
      1. 3.3.1 Cell Voltage Accuracy
      2. 3.3.2 Pack Current Accuracy
      3. 3.3.3 Auxiliary Power and System Current Consumption
      4. 3.3.4 Protection
      5. 3.3.5 Working Modes Transition
      6. 3.3.6 ESD Performance
  9. 4Design and Documentation Support
    1. 4.1 Design Files
      1. 4.1.1 Schematics
      2. 4.1.2 BOM
    2. 4.2 Tools and Software
    3. 4.3 Documentation Support
    4. 4.4 サポート・リソース
    5. 4.5 Trademarks
  10. 5About the Author

LM5168

The LM5169 and LM5168 synchronous buck converters are designed to regulate over a wide input voltage range, minimizing the need for external surge suppression components. A minimum controllable on time of 50 ns facilitates large step-down conversion ratios, enabling the direct step-down from a 48-V nominal input to low-voltage rails for reduced system complexity and design cost. The LM516x operates during input voltage dips as low as 6 V, at nearly 100% duty cycle if needed, making the device an excellent choice for wide input supply range industrial and high cell count battery pack applications. With integrated high-side and low-side power MOSFETs, the LM5169 delivers up to 0.65-A of output current and the LM5168 delivers up to 0.3-A of output current. A constant on-time (COT) control architecture provides nearly constant switching frequency with excellent load and line transient response. The LM516x is available in FPWM or auto mode versions. FPWM mode provides forced CCM operation across the entire load range supporting isolated fly-buck converter applications. Auto mode enables ultra-low IQ and diode emulation mode operation for high light-load efficiency.