JAJU922A October   2022  – February 2024

 

  1.   1
  2.   概要
  3.   リソース
  4.   特長
  5.   アプリケーション
  6.   6
  7. CLLLC システムの説明
    1. 1.1 主なシステム仕様
  8. CLLLC システムの概要
    1. 2.1 ブロック図
    2. 2.2 設計上の考慮事項とシステム設計理論
      1. 2.2.1 タンクの設計
        1. 2.2.1.1 電圧ゲイン
        2. 2.2.1.2 トランス ゲイン比の設計 (NCLLLC)
        3. 2.2.1.3 磁化インダクタンスの選択 (Lm)
        4. 2.2.1.4 共振インダクタとコンデンサの選択 (Lrp と Crp)
      2. 2.2.2 電流および電圧センシング
        1. 2.2.2.1 VPRIM 電圧センシング
        2. 2.2.2.2 VSEC 電圧センシング
        3. 2.2.2.3 ISEC 電流センシング
        4. 2.2.2.4 ISEC タンクおよび IPRIM タンク
        5. 2.2.2.5 IPRIM 電流センシング
        6. 2.2.2.6 保護 (CMPSS および X-Bar)
      3. 2.2.3 PWM 変調
  9. トーテムポール PFC システムの説明
    1. 3.1 トーテムポール ブリッジレス PFC の利点
    2. 3.2 トーテムポール ブリッジレス PFC の動作
    3. 3.3 主なシステム仕様
    4. 3.4 システム概要
      1. 3.4.1 ブロック図
    5. 3.5 システム設計理論
      1. 3.5.1 PWM
      2. 3.5.2 電流ループモデル
      3. 3.5.3 DCバス電圧制御ループ
      4. 3.5.4 電流スパイクを除去または低減するゼロクロス付近のソフトスタート
      5. 3.5.5 電流の計算
      6. 3.5.6 インダクタの計算
      7. 3.5.7 出力コンデンサの計算
      8. 3.5.8 電流および電圧センシング
  10. 主な使用製品
    1. 4.1 C2000 マイクロコントローラ TMS320F28003x
    2. 4.2 LMG352xR30-Q1
    3. 4.3 UCC21222-Q1
    4. 4.4 AMC3330-Q1
    5. 4.5 AMC3302-Q1
  11. ハードウェア、ソフトウェア、試験要件、試験結果
    1. 5.1 必要なハードウェアとソフトウェア
      1. 5.1.1 ハードウェアの設定
        1. 5.1.1.1 制御カードの設定
      2. 5.1.2 ソフトウェア
        1. 5.1.2.1 Code Composer Studio 内でプロジェクトを開く
        2. 5.1.2.2 プロジェクト構造
    2. 5.2 テストと結果
      1. 5.2.1 テストのセットアップ (初期設定)
      2. 5.2.2 CLLLC のテスト手順
        1. 5.2.2.1 ラボ 1.1 次側から 2 次側への電力フロー、PWM ドライバの開ループ チェック
        2. 5.2.2.2 ラボ 2.1 次側から 2 次側への電力フロー、PWM ドライバおよび保護付き ADC の開ループ チェック (2 次側に抵抗性負荷が接続されている状態)
          1. 5.2.2.2.1 ラボ 2 のソフトウェア オプションの設定
          2. 5.2.2.2.2 プロジェクトのビルドおよびロードとデバッグ環境の設定
          3. 5.2.2.2.3 リアルタイム エミュレーションの使用
          4. 5.2.2.2.4 コードの実行
          5. 5.2.2.2.5 電圧ループに対する SFRA プラントの測定
          6. 5.2.2.2.6 アクティブ同期整流の検証
          7. 5.2.2.2.7 電流ループに対する SFRA プラントの測定
        3. 5.2.2.3 ラボ 3.1 次側から 2 次側への電力フロー、閉電圧ループ チェック (2 次側に抵抗性負荷が接続されている状態)
          1. 5.2.2.3.1 ラボ 3 のソフトウェア オプションの設定
          2. 5.2.2.3.2 プロジェクトのビルドおよびロードとデバッグ環境の設定
          3. 5.2.2.3.3 コードの実行
          4. 5.2.2.3.4 閉電圧ループに対する SFRA の測定
        4. 5.2.2.4 ラボ 4.1 次側から 2 次側への電力フロー、閉電流ループ チェック (2 次側に抵抗性負荷が接続されている状態)
          1. 5.2.2.4.1 ラボ 4 のソフトウェア オプションの設定
          2. 5.2.2.4.2 プロジェクトのビルドおよびロードとデバッグの設定
          3. 5.2.2.4.3 コードの実行
          4. 5.2.2.4.4 閉電流ループに対する SFRA の測定
        5. 5.2.2.5 ラボ 5.1 次側から 2 次側への電力フロー、閉電流ループ チェック (2 次側で抵抗性負荷が電圧源と並列に接続されてバッテリ接続をエミュレートしている状態)
          1. 5.2.2.5.1 ラボ 5 のソフトウェア オプションの設定
          2. 5.2.2.5.2 電流ループ補償器の設計
          3. 5.2.2.5.3 プロジェクトのビルドおよびロードとデバッグの設定
          4. 5.2.2.5.4 コードの実行
          5. 5.2.2.5.5 バッテリ エミュレーション モードでの閉電流ループに対する SFRA 測定
      3. 5.2.3 TTPLPFC のテスト手順
        1. 5.2.3.1 ラボ 1:開ループ、DC
          1. 5.2.3.1.1 BUILD 1のソフトウェアオプションの設定
          2. 5.2.3.1.2 プロジェクトのビルドおよびロード
          3. 5.2.3.1.3 デバッグ環境設定ウィンドウ
          4. 5.2.3.1.4 リアルタイム エミュレーションの使用
          5. 5.2.3.1.5 コードの実行
        2. 5.2.3.2 ラボ 2:閉電流ループ DC
          1. 5.2.3.2.1 BUILD 2のソフトウェアオプションの設定
          2. 5.2.3.2.2 電流ループ補償器の設計
          3. 5.2.3.2.3 プロジェクトのビルドおよびロードとデバッグの設定
          4. 5.2.3.2.4 コードの実行
        3. 5.2.3.3 ラボ 3:閉電流ループ、AC
          1. 5.2.3.3.1 ラボ 3 のソフトウェア オプションの設定
          2. 5.2.3.3.2 プロジェクトのビルドおよびロードとデバッグの設定
          3. 5.2.3.3.3 コードの実行
        4. 5.2.3.4 ラボ 4:閉電圧および電流ループ
          1. 5.2.3.4.1 BUILD 4のソフトウェアオプションの設定
          2. 5.2.3.4.2 プロジェクトのビルドおよびロードとデバッグの設定
          3. 5.2.3.4.3 コードの実行
      4. 5.2.4 テスト結果
        1. 5.2.4.1 効率
        2. 5.2.4.2 システム性能
        3. 5.2.4.3 ボード線図
        4. 5.2.4.4 効率とレギュレーションのデータ
        5. 5.2.4.5 熱データ
        6. 5.2.4.6 PFC の波形
        7. 5.2.4.7 CLLLC の波形
  12. デザイン ファイル
    1. 6.1 回路図
    2. 6.2 部品表 (BOM)
    3. 6.3 Altium プロジェクト
    4. 6.4 ガーバー ファイル
  13. ソフトウェア ファイル
  14. 関連資料
    1. 8.1 商標
  15. 用語
  16. 10著者について
  17. 11改訂履歴

共振インダクタとコンデンサの選択 (Lrp と Crp)

Lrp を選択する際には、Lm と Lrp の比が設計パラメータとして広く使用されます。

式 4. TIDM-02013

Ln 値は、共振タンクの電圧ゲインがコンバータの動作範囲全体で十分になるように選択されます。このデザインでは、入力電圧が PFC 段から供給され、推定 10% のリップルが発生するため、10% 以上のゲイン変動が必要です。この基準と、インダクタ値、およびそれによる損失を低減するために Ln を高く維持する必要があるということを考慮に入れて、負荷によって Ln が変化する FHA のプロットに基づいて、このデザインでは Ln は 14 が選択されます(図 2-7 を参照)。

TIDM-02013 Ln の変化による CLLLC タンクのゲイン変動図 2-7 Ln の変化による CLLLC タンクのゲイン変動

Ln を選択したので、式 4 を使用して Lrp を計算できます。Lrp と Crp はコンバータの直列共振周波数を決定し、式 5 で表されます。

式 5. TIDM-02013

式 5 は、設計に必要な Crp を計算するために使用できます。ただし、部品の入手可能状況により、設計には次に近い値の Crp が使用されます。これらの部品値による BCM ゲインは、図 2-7 のとおりです。

図 2-7 では、負荷が増加する (RL_dc が低下する) と、直列共振周波数未満の領域でゲイン曲線は非単調になります。これによって、ZVS が1 次側 FET で失われ、さらに深刻なことに、制御ができなくなることにつながります。このため、公称 Vout での最大負荷を想定した場合、負荷は RL_dc = 30Ω に制限またはクランプされ、このときゲインは単調になります (図 2-7 を参照)。

さらに 図 2-7 は、BCM では、200kHz~800kHz の動作周波数全体で十分なゲインがあり、すべての動作条件に対応できます。最後に、注目すべきは、PFC リップルを低減できれば、想定される入力範囲も小さくなるということです。これにより、必要なゲイン範囲が小さくなり、最終的にはすべての負荷条件に対応するために必要な周波数変動を低減できます。