JAJU922A October   2022  – February 2024

 

  1.   1
  2.   概要
  3.   リソース
  4.   特長
  5.   アプリケーション
  6.   6
  7. CLLLC システムの説明
    1. 1.1 主なシステム仕様
  8. CLLLC システムの概要
    1. 2.1 ブロック図
    2. 2.2 設計上の考慮事項とシステム設計理論
      1. 2.2.1 タンクの設計
        1. 2.2.1.1 電圧ゲイン
        2. 2.2.1.2 トランス ゲイン比の設計 (NCLLLC)
        3. 2.2.1.3 磁化インダクタンスの選択 (Lm)
        4. 2.2.1.4 共振インダクタとコンデンサの選択 (Lrp と Crp)
      2. 2.2.2 電流および電圧センシング
        1. 2.2.2.1 VPRIM 電圧センシング
        2. 2.2.2.2 VSEC 電圧センシング
        3. 2.2.2.3 ISEC 電流センシング
        4. 2.2.2.4 ISEC タンクおよび IPRIM タンク
        5. 2.2.2.5 IPRIM 電流センシング
        6. 2.2.2.6 保護 (CMPSS および X-Bar)
      3. 2.2.3 PWM 変調
  9. トーテムポール PFC システムの説明
    1. 3.1 トーテムポール ブリッジレス PFC の利点
    2. 3.2 トーテムポール ブリッジレス PFC の動作
    3. 3.3 主なシステム仕様
    4. 3.4 システム概要
      1. 3.4.1 ブロック図
    5. 3.5 システム設計理論
      1. 3.5.1 PWM
      2. 3.5.2 電流ループモデル
      3. 3.5.3 DCバス電圧制御ループ
      4. 3.5.4 電流スパイクを除去または低減するゼロクロス付近のソフトスタート
      5. 3.5.5 電流の計算
      6. 3.5.6 インダクタの計算
      7. 3.5.7 出力コンデンサの計算
      8. 3.5.8 電流および電圧センシング
  10. 主な使用製品
    1. 4.1 C2000 マイクロコントローラ TMS320F28003x
    2. 4.2 LMG352xR30-Q1
    3. 4.3 UCC21222-Q1
    4. 4.4 AMC3330-Q1
    5. 4.5 AMC3302-Q1
  11. ハードウェア、ソフトウェア、試験要件、試験結果
    1. 5.1 必要なハードウェアとソフトウェア
      1. 5.1.1 ハードウェアの設定
        1. 5.1.1.1 制御カードの設定
      2. 5.1.2 ソフトウェア
        1. 5.1.2.1 Code Composer Studio 内でプロジェクトを開く
        2. 5.1.2.2 プロジェクト構造
    2. 5.2 テストと結果
      1. 5.2.1 テストのセットアップ (初期設定)
      2. 5.2.2 CLLLC のテスト手順
        1. 5.2.2.1 ラボ 1.1 次側から 2 次側への電力フロー、PWM ドライバの開ループ チェック
        2. 5.2.2.2 ラボ 2.1 次側から 2 次側への電力フロー、PWM ドライバおよび保護付き ADC の開ループ チェック (2 次側に抵抗性負荷が接続されている状態)
          1. 5.2.2.2.1 ラボ 2 のソフトウェア オプションの設定
          2. 5.2.2.2.2 プロジェクトのビルドおよびロードとデバッグ環境の設定
          3. 5.2.2.2.3 リアルタイム エミュレーションの使用
          4. 5.2.2.2.4 コードの実行
          5. 5.2.2.2.5 電圧ループに対する SFRA プラントの測定
          6. 5.2.2.2.6 アクティブ同期整流の検証
          7. 5.2.2.2.7 電流ループに対する SFRA プラントの測定
        3. 5.2.2.3 ラボ 3.1 次側から 2 次側への電力フロー、閉電圧ループ チェック (2 次側に抵抗性負荷が接続されている状態)
          1. 5.2.2.3.1 ラボ 3 のソフトウェア オプションの設定
          2. 5.2.2.3.2 プロジェクトのビルドおよびロードとデバッグ環境の設定
          3. 5.2.2.3.3 コードの実行
          4. 5.2.2.3.4 閉電圧ループに対する SFRA の測定
        4. 5.2.2.4 ラボ 4.1 次側から 2 次側への電力フロー、閉電流ループ チェック (2 次側に抵抗性負荷が接続されている状態)
          1. 5.2.2.4.1 ラボ 4 のソフトウェア オプションの設定
          2. 5.2.2.4.2 プロジェクトのビルドおよびロードとデバッグの設定
          3. 5.2.2.4.3 コードの実行
          4. 5.2.2.4.4 閉電流ループに対する SFRA の測定
        5. 5.2.2.5 ラボ 5.1 次側から 2 次側への電力フロー、閉電流ループ チェック (2 次側で抵抗性負荷が電圧源と並列に接続されてバッテリ接続をエミュレートしている状態)
          1. 5.2.2.5.1 ラボ 5 のソフトウェア オプションの設定
          2. 5.2.2.5.2 電流ループ補償器の設計
          3. 5.2.2.5.3 プロジェクトのビルドおよびロードとデバッグの設定
          4. 5.2.2.5.4 コードの実行
          5. 5.2.2.5.5 バッテリ エミュレーション モードでの閉電流ループに対する SFRA 測定
      3. 5.2.3 TTPLPFC のテスト手順
        1. 5.2.3.1 ラボ 1:開ループ、DC
          1. 5.2.3.1.1 BUILD 1のソフトウェアオプションの設定
          2. 5.2.3.1.2 プロジェクトのビルドおよびロード
          3. 5.2.3.1.3 デバッグ環境設定ウィンドウ
          4. 5.2.3.1.4 リアルタイム エミュレーションの使用
          5. 5.2.3.1.5 コードの実行
        2. 5.2.3.2 ラボ 2:閉電流ループ DC
          1. 5.2.3.2.1 BUILD 2のソフトウェアオプションの設定
          2. 5.2.3.2.2 電流ループ補償器の設計
          3. 5.2.3.2.3 プロジェクトのビルドおよびロードとデバッグの設定
          4. 5.2.3.2.4 コードの実行
        3. 5.2.3.3 ラボ 3:閉電流ループ、AC
          1. 5.2.3.3.1 ラボ 3 のソフトウェア オプションの設定
          2. 5.2.3.3.2 プロジェクトのビルドおよびロードとデバッグの設定
          3. 5.2.3.3.3 コードの実行
        4. 5.2.3.4 ラボ 4:閉電圧および電流ループ
          1. 5.2.3.4.1 BUILD 4のソフトウェアオプションの設定
          2. 5.2.3.4.2 プロジェクトのビルドおよびロードとデバッグの設定
          3. 5.2.3.4.3 コードの実行
      4. 5.2.4 テスト結果
        1. 5.2.4.1 効率
        2. 5.2.4.2 システム性能
        3. 5.2.4.3 ボード線図
        4. 5.2.4.4 効率とレギュレーションのデータ
        5. 5.2.4.5 熱データ
        6. 5.2.4.6 PFC の波形
        7. 5.2.4.7 CLLLC の波形
  12. デザイン ファイル
    1. 6.1 回路図
    2. 6.2 部品表 (BOM)
    3. 6.3 Altium プロジェクト
    4. 6.4 ガーバー ファイル
  13. ソフトウェア ファイル
  14. 関連資料
    1. 8.1 商標
  15. 用語
  16. 10著者について
  17. 11改訂履歴

電流スパイクを除去または低減するゼロクロス付近のソフトスタート

ゼロクロス電流スパイクは、TTPL PFC トポロジにおける一つの課題です。これは、ステート マシンによるソフトスタートの手法を実装して、一定のシーケンスでスイッチのオン / オフを切り替えることで解決されます。

TIDM-02013 ソフトスタートによる PWM シーケンスでゼロクロス時の電流スパイクを低減する図 3-8 ソフトスタートによる PWM シーケンスでゼロクロス時の電流スパイクを低減する

図 3-8は、AC波が負から正に移行するときのスイッチング シーケンスを示しています。負の半サイクル中は、Q1 がオン、Q3 がアクティブFET、Q4 が同期 FET となります。この間、Q2 を通る電圧は DC バス電圧となります。ACサイクルが変わると、Q2は100%またはほぼ100%オンになる必要があります。Q2 がすぐにオンになると、非常に大きな正のスパイクが生じます。このため、図 3-8に示すようにソフトスタート シーケンスを用いてQ4をオンにします。このソフトスタートの調整は、インダクタンス値やその他の電力段パラメータ (デバイスの Coss など) に依存します。

ゼロクロス付近で負の電流スパイクが生じるもう一つの理由は、ゼロクロス付近の AC 電圧が比較的低いことです。Q3がオンになると、デューティ サイクルが低くても、高電圧差となり、高い負の電流スパイクが生じる可能性があります。このため、Q3が再びスイッチング動作を開始する前に、十分な遅延を要します。

また、ソフトスタートの開始後に、いくらかの遅延ののちQ2がオンになります。