JAJU922A October   2022  – February 2024

 

  1.   1
  2.   概要
  3.   リソース
  4.   特長
  5.   アプリケーション
  6.   6
  7. CLLLC システムの説明
    1. 1.1 主なシステム仕様
  8. CLLLC システムの概要
    1. 2.1 ブロック図
    2. 2.2 設計上の考慮事項とシステム設計理論
      1. 2.2.1 タンクの設計
        1. 2.2.1.1 電圧ゲイン
        2. 2.2.1.2 トランス ゲイン比の設計 (NCLLLC)
        3. 2.2.1.3 磁化インダクタンスの選択 (Lm)
        4. 2.2.1.4 共振インダクタとコンデンサの選択 (Lrp と Crp)
      2. 2.2.2 電流および電圧センシング
        1. 2.2.2.1 VPRIM 電圧センシング
        2. 2.2.2.2 VSEC 電圧センシング
        3. 2.2.2.3 ISEC 電流センシング
        4. 2.2.2.4 ISEC タンクおよび IPRIM タンク
        5. 2.2.2.5 IPRIM 電流センシング
        6. 2.2.2.6 保護 (CMPSS および X-Bar)
      3. 2.2.3 PWM 変調
  9. トーテムポール PFC システムの説明
    1. 3.1 トーテムポール ブリッジレス PFC の利点
    2. 3.2 トーテムポール ブリッジレス PFC の動作
    3. 3.3 主なシステム仕様
    4. 3.4 システム概要
      1. 3.4.1 ブロック図
    5. 3.5 システム設計理論
      1. 3.5.1 PWM
      2. 3.5.2 電流ループモデル
      3. 3.5.3 DCバス電圧制御ループ
      4. 3.5.4 電流スパイクを除去または低減するゼロクロス付近のソフトスタート
      5. 3.5.5 電流の計算
      6. 3.5.6 インダクタの計算
      7. 3.5.7 出力コンデンサの計算
      8. 3.5.8 電流および電圧センシング
  10. 主な使用製品
    1. 4.1 C2000 マイクロコントローラ TMS320F28003x
    2. 4.2 LMG352xR30-Q1
    3. 4.3 UCC21222-Q1
    4. 4.4 AMC3330-Q1
    5. 4.5 AMC3302-Q1
  11. ハードウェア、ソフトウェア、試験要件、試験結果
    1. 5.1 必要なハードウェアとソフトウェア
      1. 5.1.1 ハードウェアの設定
        1. 5.1.1.1 制御カードの設定
      2. 5.1.2 ソフトウェア
        1. 5.1.2.1 Code Composer Studio 内でプロジェクトを開く
        2. 5.1.2.2 プロジェクト構造
    2. 5.2 テストと結果
      1. 5.2.1 テストのセットアップ (初期設定)
      2. 5.2.2 CLLLC のテスト手順
        1. 5.2.2.1 ラボ 1.1 次側から 2 次側への電力フロー、PWM ドライバの開ループ チェック
        2. 5.2.2.2 ラボ 2.1 次側から 2 次側への電力フロー、PWM ドライバおよび保護付き ADC の開ループ チェック (2 次側に抵抗性負荷が接続されている状態)
          1. 5.2.2.2.1 ラボ 2 のソフトウェア オプションの設定
          2. 5.2.2.2.2 プロジェクトのビルドおよびロードとデバッグ環境の設定
          3. 5.2.2.2.3 リアルタイム エミュレーションの使用
          4. 5.2.2.2.4 コードの実行
          5. 5.2.2.2.5 電圧ループに対する SFRA プラントの測定
          6. 5.2.2.2.6 アクティブ同期整流の検証
          7. 5.2.2.2.7 電流ループに対する SFRA プラントの測定
        3. 5.2.2.3 ラボ 3.1 次側から 2 次側への電力フロー、閉電圧ループ チェック (2 次側に抵抗性負荷が接続されている状態)
          1. 5.2.2.3.1 ラボ 3 のソフトウェア オプションの設定
          2. 5.2.2.3.2 プロジェクトのビルドおよびロードとデバッグ環境の設定
          3. 5.2.2.3.3 コードの実行
          4. 5.2.2.3.4 閉電圧ループに対する SFRA の測定
        4. 5.2.2.4 ラボ 4.1 次側から 2 次側への電力フロー、閉電流ループ チェック (2 次側に抵抗性負荷が接続されている状態)
          1. 5.2.2.4.1 ラボ 4 のソフトウェア オプションの設定
          2. 5.2.2.4.2 プロジェクトのビルドおよびロードとデバッグの設定
          3. 5.2.2.4.3 コードの実行
          4. 5.2.2.4.4 閉電流ループに対する SFRA の測定
        5. 5.2.2.5 ラボ 5.1 次側から 2 次側への電力フロー、閉電流ループ チェック (2 次側で抵抗性負荷が電圧源と並列に接続されてバッテリ接続をエミュレートしている状態)
          1. 5.2.2.5.1 ラボ 5 のソフトウェア オプションの設定
          2. 5.2.2.5.2 電流ループ補償器の設計
          3. 5.2.2.5.3 プロジェクトのビルドおよびロードとデバッグの設定
          4. 5.2.2.5.4 コードの実行
          5. 5.2.2.5.5 バッテリ エミュレーション モードでの閉電流ループに対する SFRA 測定
      3. 5.2.3 TTPLPFC のテスト手順
        1. 5.2.3.1 ラボ 1:開ループ、DC
          1. 5.2.3.1.1 BUILD 1のソフトウェアオプションの設定
          2. 5.2.3.1.2 プロジェクトのビルドおよびロード
          3. 5.2.3.1.3 デバッグ環境設定ウィンドウ
          4. 5.2.3.1.4 リアルタイム エミュレーションの使用
          5. 5.2.3.1.5 コードの実行
        2. 5.2.3.2 ラボ 2:閉電流ループ DC
          1. 5.2.3.2.1 BUILD 2のソフトウェアオプションの設定
          2. 5.2.3.2.2 電流ループ補償器の設計
          3. 5.2.3.2.3 プロジェクトのビルドおよびロードとデバッグの設定
          4. 5.2.3.2.4 コードの実行
        3. 5.2.3.3 ラボ 3:閉電流ループ、AC
          1. 5.2.3.3.1 ラボ 3 のソフトウェア オプションの設定
          2. 5.2.3.3.2 プロジェクトのビルドおよびロードとデバッグの設定
          3. 5.2.3.3.3 コードの実行
        4. 5.2.3.4 ラボ 4:閉電圧および電流ループ
          1. 5.2.3.4.1 BUILD 4のソフトウェアオプションの設定
          2. 5.2.3.4.2 プロジェクトのビルドおよびロードとデバッグの設定
          3. 5.2.3.4.3 コードの実行
      4. 5.2.4 テスト結果
        1. 5.2.4.1 効率
        2. 5.2.4.2 システム性能
        3. 5.2.4.3 ボード線図
        4. 5.2.4.4 効率とレギュレーションのデータ
        5. 5.2.4.5 熱データ
        6. 5.2.4.6 PFC の波形
        7. 5.2.4.7 CLLLC の波形
  12. デザイン ファイル
    1. 6.1 回路図
    2. 6.2 部品表 (BOM)
    3. 6.3 Altium プロジェクト
    4. 6.4 ガーバー ファイル
  13. ソフトウェア ファイル
  14. 関連資料
    1. 8.1 商標
  15. 用語
  16. 10著者について
  17. 11改訂履歴
コードの実行
  1. TIDM-02013 をクリックしてプロジェクトを実行します。
  2. CLLLC_clearTrip 変数に 1 を書き込み、検出をクリアします。 CLLLC_closeGvLoop 変数がまだ 0 に設定されていないため、コンバータは開ループで動作します。ファームウェアにはソフトスタートが実装されていないため、まず 1 次側と 2 次側の電圧を手動でソフトスタートします。
  3. Watch ビューで、CLLLC_vPrimSensed_Volts、CLLLC_iPrimSensed_Amps、CLLLC_vSecSensed_Volts、CLLLC_iSecSensed_Amps の各変数が定期的に更新されているかどうかチェックします。(注:この時点では電力が印加されていないため、これらの値はゼロに近くなっています。)
  4. 入力 PRIM DC 電圧を 0V から 400V に徐々に上げて、コンバータをソフトスタートします。CLLLC_vPrimSensed_Volts に VPRIM の正しい値 (400V に近い値) が表示されていることを確認します。
  5. デフォルトでは、CLLLC_pwmPeriodRef_pu 変数は 0.6 (500.8kHz) に設定されています。これは、コンバータの直列共振周波数に近いですが、実際のハードウェアに搭載されている部品のばらつきが原因で、直列共振周波数より低くなったり、高くなったりします。
  6. 400V の 1 次側入力 で、巻線比が 1.33 の場合、CLLLC_vSecSensed_Volts 変数は 300V 近くになります。また、テスト条件で指定されている負荷の場合、負荷は 6.5A 近くになります。CLLLC_iSecRef_Amps 変数を 6.5A に設定します。何らかの理由で測定電流が 6.5A と異なる場合は、Ref を測定値に近い値に設定してください。ソフトウェアにはソフトスタートがないため、この基準を動作ポイントに近づけることが重要です。
  7. CLLLC_closeGiLoop 変数を 1 に設定します。 これで電流ループが閉じて、コントローラによる電流制御が試行されます。
  8. CLLC_iSecRef_Amps を 6.3A から 6.8A に変化させて、閉ループ動作をテストします。出力に抵抗性負荷が接続されており、その電圧はバッテリよりも電流に対して大きく変化するため、ユーザーは電流を大きく変化させることはできません。このような急激な電圧上昇によって、コンバータはすぐに固定された VPRIM の制御可能範囲を超える可能性があります。狭い範囲内であれば、電流トラッキングを確認できます。