SBAA463A january   2021  – april 2023 TMAG5170 , TMAG5170-Q1 , TMAG5170D-Q1 , TMAG5173-Q1 , TMAG5273

 

  1.   Abstract
  2.   Trademarks
  3. 1Introduction
    1. 1.1 Angle Measurement With One-Dimensional Sensors
    2. 1.2 Challenges of Angular Measurements
  4. 2Benefit of Multi-Axis Sensors
    1. 2.1 Simplified Mechanical Placement
    2. 2.2 Sensitivity Matching
    3. 2.3 CORDIC Angle Estimations
    4. 2.4 Tamper and Stray Field Detection
  5. 3Angular Measurement Considerations
    1. 3.1 Sensor Alignment
    2. 3.2 Sensor Calibration
    3. 3.3 Input Referred Noise
    4. 3.4 Impact of Sample Rate
  6. 4Practical Application
    1. 4.1 Push-Button Knob
      1. 4.1.1 Evaluating Design Constraints
      2. 4.1.2 Magnet Selection
      3. 4.1.3 Prototyping and Verification
    2. 4.2 Off-Axis Design
      1. 4.2.1 Sensitivity Gain Correction
      2. 4.2.2 Accuracy Verification
  7. 5Summary
  8. 6References
  9. 7Revision History

Off-Axis Design

To further demonstrate the benefit of designing a system for angular measurement using a 3D sensor with sensitivity correction, we will also attempt an off axis configuration and measure the exact angle of the magnet as it rotates. For this effort, we want to place the sensor at the outer edge of the magnet similar to what is shown in Figure2-5.

In this configuration, we will use the same magnet from the push-button knob, but will mount it to a motion controller that can accurately drive angular position. Here we can determine the exact performance of the configuration.

For this analysis, we will use the ±50 mT range and again target 90% full scale as a peak input value.