• Menu
  • Product
  • Email
  • PDF
  • Order now
  • ADS129x Low-Power, 8-Channel, 24-Bit Analog Front-End for Biopotential Measurements

    • SBAS459K January   2010  – August 2015 ADS1294 , ADS1294R , ADS1296 , ADS1296R , ADS1298 , ADS1298R

      PRODUCTION DATA.  

  • CONTENTS
  • SEARCH
  • ADS129x Low-Power, 8-Channel, 24-Bit Analog Front-End for Biopotential Measurements
  1. 1 Features
  2. 2 Applications
  3. 3 Description
  4. 4 Revision History
  5. 5 Device Comparison
  6. 6 Pin Configuration and Functions
  7. 7 Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Timing Requirements: Serial Interface
    7. 7.7 Switching Characteristics: Serial Interface
    8. 7.8 Typical Characteristics
  8. 8 Parameter Measurement Information
    1. 8.1 Noise Measurements
  9. 9 Detailed Description
    1. 9.1 Overview
    2. 9.2 Functional Block Diagram
    3. 9.3 Feature Description
      1. 9.3.1 Analog Functionality
        1. 9.3.1.1 EMI Filter
        2. 9.3.1.2 Analog Input Structure
        3. 9.3.1.3 Input Multiplexer
          1. 9.3.1.3.1 Device Noise Measurements
          2. 9.3.1.3.2 Test Signals (TestP and TestN)
          3. 9.3.1.3.3 Auxiliary Differential Input (TESTP_PACE_OUT1, TESTN_PACE_OUT2)
          4. 9.3.1.3.4 Temperature Sensor (TempP, TempN)
          5. 9.3.1.3.5 Supply Measurements (MVDDP, MVDDN)
          6. 9.3.1.3.6 Lead-Off Excitation Signals (LoffP, LoffN)
          7. 9.3.1.3.7 Auxiliary Single-Ended Input
        4. 9.3.1.4 Analog Input
        5. 9.3.1.5 PGA Settings and Input Range
          1. 9.3.1.5.1 Input Common-Mode Range
          2. 9.3.1.5.2 Input Differential Dynamic Range
          3. 9.3.1.5.3 ADC Delta-Sigma Modulator
        6. 9.3.1.6 Reference
        7. 9.3.1.7 ECG-Specific Functions
          1. 9.3.1.7.1 Input Multiplexer (Rerouting The Right Leg Drive Signal)
          2. 9.3.1.7.2 Input Multiplexer (Measuring The Right Leg Drive Signal)
          3. 9.3.1.7.3 Wilson Central Terminal (WCT) and Chest Leads
            1. 9.3.1.7.3.1 Augmented Leads
            2. 9.3.1.7.3.2 Right Leg Drive with the WCT Point
          4. 9.3.1.7.4 Lead-Off Detection
            1. 9.3.1.7.4.1 DC Lead-Off
            2. 9.3.1.7.4.2 AC Lead-Off
          5. 9.3.1.7.5 RLD Lead-Off
          6. 9.3.1.7.6 Right Leg Drive (RLD) DC Bias Circuit
            1. 9.3.1.7.6.1 WCT as RLD
            2. 9.3.1.7.6.2 RLD Configuration with Multiple Devices
          7. 9.3.1.7.7 Pace Detect
            1. 9.3.1.7.7.1 Software Approach
            2. 9.3.1.7.7.2 External Hardware Approach
          8. 9.3.1.7.8 Respiration
            1. 9.3.1.7.8.1 External Respiration Circuitry (RESP_CTRL = 01b)
            2. 9.3.1.7.8.2 Internal Respiration Circuitry with Internal Clock (RESP_CTRL = 10b, ADS129xR Only)
            3. 9.3.1.7.8.3 Internal Respiration Circuitry With User-Generated Signals (RESP_CTRL = 11b, ADS129xR Only)
      2. 9.3.2 Digital Functionality
        1. 9.3.2.1 GPIO Pins (GPIO[4:1])
        2. 9.3.2.2 Power-Down Pin (PWDN)
        3. 9.3.2.3 Reset (RESET Pin and Reset Command)
        4. 9.3.2.4 Digital Decimation Filter
          1. 9.3.2.4.1 Sinc Filter Stage (sinx / x)
        5. 9.3.2.5 Clock
    4. 9.4 Device Functional Modes
      1. 9.4.1 Data Acquisition
        1. 9.4.1.1 Start Mode
          1. 9.4.1.1.1 Settling Time
        2. 9.4.1.2 Data Ready Pin (DRDY)
        3. 9.4.1.3 Data Retrieval
          1. 9.4.1.3.1 Status Word
          2. 9.4.1.3.2 Readback Length
          3. 9.4.1.3.3 Data Format
        4. 9.4.1.4 Single-Shot Mode
        5. 9.4.1.5 Continuous Conversion Mode
      2. 9.4.2 Multiple-Device Configuration
        1. 9.4.2.1 Cascade Configuration
        2. 9.4.2.2 Daisy-Chain Configuration
    5. 9.5 Programming
      1. 9.5.1 SPI Interface
        1. 9.5.1.1 Chip Select Pin (CS)
        2. 9.5.1.2 Serial Clock (SCLK)
          1. 9.5.1.2.1 SCLK Clocking Methods
        3. 9.5.1.3 Data Input Pin (DIN)
        4. 9.5.1.4 Data Output Pin (DOUT)
      2. 9.5.2 SPI Command Definitions
        1. 9.5.2.1  WAKEUP: Exit Standby Mode
        2. 9.5.2.2  STANDBY: Enter Standby Mode
        3. 9.5.2.3  RESET: Reset Registers to Default Values
        4. 9.5.2.4  START: Start Conversions
        5. 9.5.2.5  STOP: Stop Conversions
        6. 9.5.2.6  RDATAC: Read Data Continuous
        7. 9.5.2.7  SDATAC: Stop Read Data Continuous
        8. 9.5.2.8  RDATA: Read Data
        9. 9.5.2.9  Sending Multibyte Commands
        10. 9.5.2.10 RREG: Read From Register
        11. 9.5.2.11 WREG: Write to Register
    6. 9.6 Register Maps
      1. 9.6.1 Register Descriptions
        1. 9.6.1.1  ID: ID Control Register (address = 00h) (reset = xxh)
        2. 9.6.1.2  CONFIG1: Configuration Register 1 (address = 01h) (reset = 06h)
        3. 9.6.1.3  CONFIG2: Configuration Register 2 (address = 02h) (reset = 40h)
        4. 9.6.1.4  CONFIG3: Configuration Register 3 (address = 03h) (reset = 40h)
        5. 9.6.1.5  LOFF: Lead-Off Control Register (address = 04h) (reset = 00h)
        6. 9.6.1.6  CHnSET: Individual Channel Settings (n = 1 to 8) (address = 05h to 0Ch) (reset = 00h)
        7. 9.6.1.7  RLD_SENSP: RLD Positive Signal Derivation Register (address = 0Dh) (reset = 00h)
        8. 9.6.1.8  RLD_SENSN: RLD Negative Signal Derivation Register (address = 0Eh) (reset = 00h)
        9. 9.6.1.9  LOFF_SENSP: Positive Signal Lead-Off Detection Register (address = 0Fh) (reset = 00h)
        10. 9.6.1.10 LOFF_SENSN: Negative Signal Lead-Off Detection Register (address = 10h) (reset = 00h)
        11. 9.6.1.11 LOFF_FLIP: Lead-Off Flip Register (address = 11h) (reset = 00h)
        12. 9.6.1.12 LOFF_STATP: Lead-Off Positive Signal Status Register (address = 12h) (reset = 00h)
        13. 9.6.1.13 LOFF_STATN: Lead-Off Negative Signal Status Register (address = 13h) (reset = 00h)
        14. 9.6.1.14 GPIO: General-Purpose I/O Register (address = 14h) (reset = 0Fh)
        15. 9.6.1.15 PACE: Pace Detect Register (address = 15h) (reset = 00h)
        16. 9.6.1.16 RESP: Respiration Control Register (address = 16h) (reset = 00h)
        17. 9.6.1.17 CONFIG4: Configuration Register 4 (address = 17h) (reset = 00h)
        18. 9.6.1.18 WCT1: Wilson Central Terminal and Augmented Lead Control Register (address = 18h) (reset = 00h)
        19. 9.6.1.19 WCT2: Wilson Central Terminal Control Register (address = 18h) (reset = 00h)
  10. 10Application and Implementation
    1. 10.1 Application Information
      1. 10.1.1 Setting the Device for Basic Data Capture
        1. 10.1.1.1 Lead-Off
        2. 10.1.1.2 Right Leg Drive
        3. 10.1.1.3 Pace Detection
      2. 10.1.2 Establishing the Input Common-Mode
      3. 10.1.3 Antialiasing
    2. 10.2 Typical Applications
      1. 10.2.1 ADS129xR Respiration Measurement Using Internal Modulation Circuitry
        1. 10.2.1.1 Design Requirements
        2. 10.2.1.2 Detailed Design Procedure
        3. 10.2.1.3 Application Curve
      2. 10.2.2 Software-Based Artificial Pacemaker Detection Using the PACEOUT Pins on the ADS129x
        1. 10.2.2.1 Design Requirements
        2. 10.2.2.2 Detailed Design Procedure
        3. 10.2.2.3 Application Curve
  11. 11Power Supply Recommendations
    1. 11.1 Power-Up Sequencing
    2. 11.2 Connecting to Unipolar (3 V or 1.8 V) Supplies
    3. 11.3 Connecting to Bipolar (±1.5 V or ±1.8 V) Supplies
  12. 12Layout
    1. 12.1 Layout Guidelines
    2. 12.2 Layout Example
  13. 13Device and Documentation Support
    1. 13.1 Related Links
    2. 13.2 Community Resources
    3. 13.3 Trademarks
    4. 13.4 Electrostatic Discharge Caution
    5. 13.5 Glossary
  14. 14Mechanical, Packaging, and Orderable Information
  15. IMPORTANT NOTICE
search No matches found.
  • Full reading width
    • Full reading width
    • Comfortable reading width
    • Expanded reading width
  • Card for each section
  • Card with all content

 

DATA SHEET

ADS129x Low-Power, 8-Channel, 24-Bit Analog Front-End for Biopotential Measurements

1 Features

  • Eight Low-Noise PGAs and Eight High-Resolution ADCs (ADS1298, ADS1298R)
  • Low Power: 0.75 mW/channel
  • Input-Referred Noise: 4 μVPP (150 Hz BW, G = 6)
  • Input Bias Current: 200 pA
  • Data Rate: 250 SPS to 32 kSPS
  • CMRR: –115 dB
  • Programmable Gain: 1, 2, 3, 4, 6, 8, or 12
  • Supports systems meeting AAMI EC11, EC13, IEC60601-1, IEC60601-2-27, and IEC60601-2-51 Standards
  • Unipolar or Bipolar Supplies:
    • AVDD = 2.7 V to 5.25 V
    • DVDD = 1.65 V to 3.6 V
  • Built-In Right Leg Drive Amplifier, Lead-Off Detection, Wilson Center Terminal, Pace Detection, Test Signals
  • Integrated Respiration Impedance Measurement
  • Digital Pace Detection Capability
  • Built-In Oscillator and Reference
  • SPI™-Compatible Serial Interface

2 Applications

  • Medical Instrumentation (ECG, EMG, and EEG):
    Patient Monitoring; Holter, Event, Stress, and Vital Signs Including ECG, AED, Telemedicine
    Bispectral Index (BIS), Evoked Audio Potential (EAP), Sleep Study Monitor

Simplified Schematic

ADS1294 ADS1294R ADS1296 ADS1296R ADS1298 ADS1298R fbd_sbas459.gif

3 Description

The ADS1294, ADS1296, ADS1298 (ADS129x) and ADS1294R, ADS1296R ADS1298R (ADS129xR) are a family of multichannel, simultaneous sampling,
24-bit, delta-sigma (ΔΣ) analog-to-digital converters (ADCs) with built-in programmable gain amplifiers (PGAs), internal reference, and an onboard oscillator. The ADS129x and ADS129xR incorporate all of the features that are commonly required in medical electrocardiogram (ECG) and electroencephalogram (EEG) applications. With high levels of integration and exceptional performance, the ADS129x and ADS129xR enables the development of scalable medical instrumentation systems at significantly reduced size, power, and overall cost.

The ADS129x and ADS129xR have a flexible input multiplexer (mux) per channel that can be independently connected to the internally-generated signals for test, temperature, and lead-off detection. Additionally, any configuration of input channels can be selected for derivation of the right leg drive (RLD) output signal. The ADS129x and ADS129xR operate at data rates as high as 32 kSPS, thereby allowing the implementation of software pace detection. Lead-off detection can be implemented internal to the device, either with a pullup or pulldown resistor, or an excitation current sink or source. Three integrated amplifiers generate the Wilson central terminal (WCT) and the Goldberger central terminals (GCT) required for a standard 12-lead ECG. The ADS129xR versions include a fully integrated, respiration impedance measurement function. Multiple ADS129x and ADS129xR devices can be cascaded in high channel count systems in a daisy-chain configuration.

Package options include a tiny 8-mm × 8-mm,
64-ball BGA, and a TQFP-64. The ADS129x BGA version is specified over the commercial temperature range of 0°C to 70°C. The ADS129xR BGA and ADS129x TQFP versions are specified over the industrial temperature range of –40°C to +85°C.

Device Information(1)

PART NUMBER PACKAGE BODY SIZE (NOM)
ADS129x, ADS129xR NFBGA (64) 8.00 mm × 8.00 mm
TQFP (64) 10.00 mm × 10.00 mm
  1. For all available packages, see the package option addendum at the end of the data sheet.

4 Revision History

Changes from J Revision (January 2014) to K Revision

  • Added ESD Ratings table, Feature Description section, Device Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and Mechanical, Packaging, and Orderable Information section Go
  • Changed text throughout data sheet for clarityGo
  • Added note to DAISY_IN pin Go
  • Added note to DAISY_IN pin Go
  • Changed Equation 3Go

Changes from I Revision (January 2012) to J Revision

  • Changed NC pin discription in Pin Assignments tableGo
  • Changed NC pin discription in Pin Assignments tableGo
  • Added graph of INTERNAL VREF DRIFT vs TEMPERATUREGo
  • Changed order of subsections in the Theory of Operation sectionGo
  • Changed single-ended input description to correct input range valuesGo
  • Changed Figure 27 to show correct input range for single-ended inputsGo
  • Changed Figure 28 to show correct input range for single-ended inputsGo
  • Deleted text regarding large scale signalGo
  • Changed Figure 32 to provide a more stable external reference driver circuitGo
  • Updated Figure 57Go
  • Added Figure 58Go
  • Added discussion of SCLK/DRDY bus behavior to Data Ready (DRDY) sectionGo
  • Added Figure 60Go
  • Added status Word section and Figure 61 to discuss the status wordGo
  • Added Readback Length sectionGo
  • Added SCLK Clocking Methods sectionGo
  • Changed units in TEST_AMP bit description in CONFIG2 registerGo
  • Changed Figure 93 to clarify Initial Flow at Power-UpGo
  • Changed Power-Up Sequencing section text to clarify start-up timingGo
  • Changed Figure 105Go
  • Changed power-up reset wait time in Table 38Go

Changes from H Revision (October 2011) to I Revision

  • Added eighth Features bullet (list of standards supported)Go
  • Updated BGA pin outGo
  • Deleted duplicate Digital input voltage and Digital output voltage rows from Absolute Maximum Ratings tableGo
  • Changed parameter name of Channel Performance, Common-mode rejection ratio and Power-supply rejection ratio parameters in Electrical Characteristics tableGo
  • Updated Functional Block DiagramGo
  • Updated description of Analog Input sectionGo
  • Updated Figure 30Go
  • Updated Figure 33Go
  • Updated Figure 34Go
  • Changed description of START pin in START sectionGo
  • Changed description of Data Ready (DRDY) sectionGo
  • Changed conversion description in Single-Shot Mode sectionGo
  • Changed conversion description in Continuous Mode sectionGo
  • Changed Unit column in Table 14Go
  • Added power-down recommendation to bit 7 description of CHnSET: Individual Channel Settings sectionGo
  • Changed description of bit 5 in RESP: Respiration Control Register sectionGo
  • Corrected name of bit 6 in WCT2: Wilson Central Terminal Control Register sectionGo

Changes from G Revision (February 2011) to H Revision

  • Changed footnote 1 of BGA Pin Assignments tableGo
  • Added footnote 1 cross-reference to RLDIN, TESTP_PACE_OUT1, and TESTP_PACE_OUT in BGA Pin Assignments tableGo
  • Changed footnote 1 of PAG Pin Assignments tableGo
  • Added footnote 1 cross-reference to TESTP_PACE_OUT1, TESTP_PACE_OUT2, and RLDIN in PAG Pin Assignments tableGo
  • Changed description of AVSS and AVDD in PAG Pin Assignments tableGo
  • Added (ADS1298) to High-Resolution mode and Low-Power mode test conditions of Supply Current section in Electrical Characteristics tableGo
  • Changed 3-V Power Dissipation, Quiescent channel power test conditions in Electrical Characteristics tableGo
  • Changed 5-V Power Dissipation, Quiescent channel power test conditions in Electrical Characteristics tableGo
  • Changed title of Figure 20Go
  • Updated Figure 42Go
  • Added new paragraph to Respiration sectionGo
  • Updated Equation 5Go
  • Changed title of Table 13Go
  • Updated Figure 66Go
  • Changed description of STANDBY: Enter STANDBY Mode sectionGo
  • Changed bit name for bits 5, 6, and 7 in ID register of Table 16Go
  • Changed bit name for bits 5, 6, and 7 in ID: ID Control Register sectionGo
  • Added footnote to Figure 97Go
  • Changed description of solid ceramic capacitor in Power Supplies and Grounding sectionGo
  • Changed description of Connecting the Device to Bipolar (±1.5 V/1.8 V) Supplies sectionGo

Changes from F Revision (October 2010) to G Revision

  • Updated entire document to include ADS1294R, ADS1296R, and ADS1298R devicesGo
  • Added CONFIG2.WCT_CHOP bit functionality to Wilson Central Terminal (WCT) and Chest Leads sectionGo
  • Added CONFIG2.WCT_CHOP bit functionality to CONFIG2: Configuration Register 2Go
  • Corrected TEST_PACE_OUT1 and TEST_PACE_OUT2 description in PACE: PACE Detect RegisterGo

5 Device Comparison

PRODUCT PACKAGE OPTIONS OPERATING TEMPERATURE RANGE RESPIRATION CIRCUITRY CHANNELS ADC RESOLUTION MAXIMUM SAMPLING RATE
ADS1194 TQFP-64 0°C to 70°C No 4 16 8 kSPS
NFBGA-64 0°C to 70°C
ADS1196 TQFP-64 0°C to 70°C No 6 16 8 kSPS
NFBGA-64 0°C to 70°C
ADS1198 TQFP-64 0°C to 70°C No 8 16 8 kSPS
NFBGA-64 0°C to 70°C
ADS1294 TQFP-64 –40°C to +85°C External 4 24 32 kSPS
NFBGA-64 0°C to 70°C
ADS1294R NFBGA-64 –40°C to +85°C Yes
ADS1296 TQFP-64 –40°C to +85°C External 6 24 32 kSPS
NFBGA-64 0°C to 70°C
ADS1296R NFBGA-64 –40°C to +85°C Yes
ADS1298 TQFP-64 –40°C to +85°C External 8 24 32 kSPS
NFBGA-64 0°C to 70°C
ADS1298R NFBGA-64 –40°C to +85°C Yes

6 Pin Configuration and Functions

ZXG Package
64-Pin NFBGA
Top View, Solder Bumps on Bottom Side
ADS1294 ADS1294R ADS1296 ADS1296R ADS1298 ADS1298R po_bga_bas459.gif

Pin Function: NFBGA Package

PIN TYPE DESCRIPTION
NO. NAME
1A IN8P(1) Analog input Differential analog positive input 8 (ADS1298 and ADS1298R)
1B IN7P(1) Analog input Differential analog positive input 7 (ADS1298 and ADS1298R)
1C IN6P(1) Analog input Differential analog positive input 6 (ADS1296, ADS1298, ADS1296R, ADS1298R)
1D IN5P(1) Analog input Differential analog positive input 5 (ADS1296, ADS1298, ADS1296R, ADS1298R)
1E IN4P(1) Analog input Differential analog positive input 4
1F IN3P(1) Analog input Differential analog positive input 3
1G IN2P(1) Analog input Differential analog positive input 2
1H IN1P(1) Analog input Differential analog positive input 1
2A IN8N(1) Analog input Differential analog negative input 8 (ADS1298, ADS1298R)
2B IN7N(1) Analog input Differential analog negative input (ADS1298, ADS1298R)
2C IN6N(1) Analog input Differential analog negative input 6 (ADS1296, ADS1298, ADS1296R, ADS1298R)
2D IN5N(1) Analog input Differential analog negative input 5 (ADS1296, ADS1298, ADS1296R, ADS1298R)
2E IN4N(1) Analog input Differential analog negative input 4
2F IN3N(1) Analog input Differential analog negative input 3
2G IN2N(1) Analog input Differential analog negative input 2
2H IN1N(1) Analog input Differential analog negative input 1
3A RLDIN(1) Analog input Right leg drive input to mux
3B RLDOUT Analog output Right leg drive output
3C RLDINV Analog input/output Right leg drive inverting input
3D WCT Analog output Wilson central terminal output
3E TESTP_PACE_OUT1(1) Analog input/buffer output Internal test signal or single-ended buffer output based on register settings
3F TESTN_PACE_OUT2(1) Analog input/output Internal test signal or single-ended buffer output based on register settings
3G VCAP4 — Analog bypass capacitor; connect 1-μF capacitor to AVSS
3H VREFP Analog input/output Positive reference input/output voltage
4A AVDD Supply Analog supply
4B AVDD Supply Analog supply
4C RLDREF Analog input Right leg drive noninverting input
4D AVSS Supply Analog ground
4E RESV1 Digital input Reserved for future use; must tie to logic low (DGND).
4F RESP_MODN Analog output ADS129xR: modulation clock for respiration measurement, negative side.
ADS129x: leave floating.
4G RESP_MODP Analog output ADS129xR: modulation clock for respiration measurement, positive side.
ADS129x: leave floating.
4H VREFN Analog input Negative reference voltage
5A AVSS Supply Analog ground
5B AVSS Supply Analog ground
5C AVSS Supply Analog ground
5D AVSS Supply Analog ground
5E GPIO4 Digital input/output General-purpose input/output pin 4
5F GPIO1 Digital input/output General-purpose input/output pin 1
5G PWDN Digital input Power-down pin; active low
5H VCAP1 — Analog bypass capacitor; connect 22-μF capacitor to AVSS
6A AVDD Supply Analog supply
6B AVDD Supply Analog supply
6C AVDD Supply Analog supply
6D DRDY Digital output Data ready; active low
6E GPIO3 Digital input/output General purpose input/output pin 3
6F DAISY_IN(2) Digital input Daisy-chain input; if not used, short to DGND.
6G RESET Digital input System-reset pin; active low
6H VCAP2 — Analog bypass capacitor; connect 1-μF capacitor to AVSS
7A AVDD1 Supply Analog supply for charge pump
7B VCAP3 — Analog bypass capacitor; internally generated AVDD + 1.9 V; connect 1-μF capacitor to AVSS
7C DGND Supply Digital ground
7D DGND Supply Digital ground
7E GPIO2 Digital input/output General-purpose input/output pin 2
7F CS Digital input SPI chip select; active low
7G START Digital input Start conversion
7H DGND Supply Digital ground
8A AVSS1 Supply Analog ground for charge pump
8B CLKSEL Digital input Master clock select
8C DVDD Supply Digital power supply
8D DVDD Supply Digital power supply
8E DOUT Digital output SPI data output
8F SCLK Digital input SPI clock
8G CLK Digital input/output External Master clock input or internal clock output.
8H DIN Digital input SPI data input
(1) Connect unused pins to AVDD.
(2) When DAISY_IN is not used, tie to logic 0.
PAG PACKAGE
64-Pin TQFP
Top View
ADS1294 ADS1294R ADS1296 ADS1296R ADS1298 ADS1298R po_qfp_bas459.gif

Pin Functions: TQFP Package

PIN TYPE DESCRIPTION
NO. NAME
1 IN8N(1) Analog input Differential analog negative input 8 (ADS1298)
2 IN8P(1) Analog input Differential analog positive input 8 (ADS1298)
3 IN7N(1) Analog input Differential analog negative input 7 (ADS1298)
4 IN7P(1) Analog input Differential analog positive input 7 (ADS1298)
5 IN6N(1) Analog input Differential analog negative input 6 (ADS1296, ADS1298)
6 IN6P(1) Analog input Differential analog positive input 6 (ADS1296, ADS1298)
7 IN5N(1) Analog input Differential analog negative input 5 (ADS1296, ADS1298)
8 IN5P(1) Analog input Differential analog positive input 5 (ADS1296, ADS1298)
9 IN4N(1) Analog input Differential analog negative input 4
10 IN4P(1) Analog input Differential analog positive input 4
11 IN3N(1) Analog input Differential analog negative input 3
12 IN3P(1) Analog input Differential analog positive input 3
13 IN2N(1) Analog input Differential analog negative input 2
14 IN2P(1) Analog input Differential analog positive input 2
15 IN1N(1) Analog input Differential analog negative input 1
16 IN1P(1) Analog input Differential analog positive input 1
17 TESTP_PACE_OUT1(1) Analog input/buffer output Internal test signal/single-ended buffer output based on register settings
18 TESTN_PACE_OUT2(1) Analog input/output Internal test signal/single-ended buffer output based on register settings
19 AVDD Supply Analog supply
20 AVSS Supply Analog ground
21 AVDD Supply Analog supply
22 AVDD Supply Analog supply
23 AVSS Supply Analog ground
24 VREFP Analog input/output Positive reference input/output voltage
25 VREFN Analog input Negative reference voltage
26 VCAP4 — Analog bypass capacitor; connect 1-μF capacitor to AVSS
27 NC — No connection, can be connected to AVDD or AVSS with a 10-kΩ resistor
28 VCAP1 — Analog bypass capacitor; connect 22-μF capacitor to AVSS
29 NC — No connection, can be connected to AVDD or AVSS with a 10-kΩ resistor
30 VCAP2 — Analog bypass capacitor; connect 1-μF capacitor to AVSS
31 RESV1 Digital input Reserved for future use; must tie to logic low (DGND).
32 AVSS Supply Analog ground
33 DGND Supply Digital ground
34 DIN Digital input SPI data input
35 PWDN Digital input Power-down pin; active low
36 RESET Digital input System-reset pin; active low
37 CLK Digital input/output External Master clock input or internal clock output.
38 START Digital input Start conversion
39 CS Digital input SPI chip select; active low
40 SCLK Digital input SPI clock
41 DAISY_IN(2) Digital input Daisy-chain input; if not used, short to DGND.
42 GPIO1 Digital input/output General-purpose input/output pin 1
43 DOUT Digital output SPI data output
44 GPIO2 Digital input/output General-purpose input/output pin 2
45 GPIO3 Digital input/output General-purpose input/output pin 3
46 GPIO4 Digital input/output General-purpose input/output pin 4
47 DRDY Digital output Data ready; active low
48 DVDD Supply Digital power supply
49 DGND Supply Digital ground
50 DVDD Supply Digital power supply
51 DGND Supply Digital ground
52 CLKSEL Digital input Master clock select
53 AVSS1 Supply Analog ground
54 AVDD1 Supply Analog supply
55 VCAP3 — Analog bypass capacitor; internally generated AVDD + 1.9 V; connect 1-μF capacitor to AVSS
56 AVDD Supply Analog supply
57 AVSS Supply Analog ground
58 AVSS Supply Analog ground
59 AVDD Supply Analog supply
60 RLDREF Analog input Right leg drive noninverting input
61 RLDINV Analog input/output Right leg drive inverting input
62 RLDIN(1) Analog input Right leg drive input to mux
63 RLDOUT Analog output Right leg drive output
64 WCT Analog output Wilson Central Terminal output
(1) Connect unused pins to AVDD.
(2) When DAISY_IN is not used, tie to logic 0.

7 Specifications

7.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)
MIN MAX UNIT
AVDD to AVSS –0.3 5.5 V
DVDD to DGND –0.3 3.9 V
AVSS to DGND –3 0.2 V
VREFP input to AVSS AVSS – 0.3 AVDD + 0.3 V
Analog input voltage AVSS – 0.3 AVDD + 0.3 V
Digital input voltage DGND – 0.3 DVDD + 0.3 V
Digital output voltage DGND – 0.3 DVDD + 0.3 V
Input current (momentary) 100 mA
Input current (continuous) 10 mA
Junction temperature, TJ –40 150 °C
Storage temperature, Tstg –60 150 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

7.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins(1) ±2000 V
Charged device model (CDM), per JEDEC specification JESD22-C101, all pins(2) ±500
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions

over operating ambient temperature range (unless otherwise noted)
MIN NOM MAX UNIT
POWER SUPPLY
Analog power supply (AVDD – AVSS) 2.7 3 5.25 V
Digital power supply (DVDD) 1.65 1.8 3.6 V
AVDD – DVDD –2.1 3.6 V
ANALOG INPUTS
Full-scale differential input voltage range (AINP – AINN) ±VREF / Gain V
Common-mode input voltage See the Input Common-Mode Range subsection of the PGA Settings and Input Range section
VOLTAGE REFERENCE INPUTS
Differential reference voltage 3-V supply VREF = (VREFP – VREFN) 2.5 V
5-V supply VREF = (VREFP – VREFN) 4 V
Negative input (VREFN) AVSS V
Positive input (VREFP) AVSS + 2.5 V
CLOCK INPUT
External clock input frequency CLKSEL pin = 0 1.94 2.048 2.25 MHz
DIGITAL INPUTS
Input Voltage DGND DVDD V
TEMPERATURE RANGE
Operating temperature range Commercial grade 0 70 °C
Industrial grade –40 85 °C

7.4 Thermal Information

THERMAL METRIC(1) ADS129x, ADS129xR UNIT
PAG (TQFP) ZXG (NFBGA)
64 PINS 64 PINS
RθJA Junction-to-ambient thermal resistance 35 48 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 31 8 °C/W
RθJB Junction-to-board thermal resistance 26 25 °C/W
ψJT Junction-to-top characterization parameter 0.1 0.5 °C/W
ψJB Junction-to-board characterization parameter N/A 22 °C/W
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

7.5 Electrical Characteristics

Min and max specifications apply for all commercial grade (TA = 0°C to 70°C) devices, and from TA = –40°C to +85°C for industrial-grade devices. Typical specifications at TA = 25°C. All specifications at DVDD = 1.8 V, AVDD – AVSS = 3 V(3),
VREF = 2.4 V, external fCLK = 2.048 MHz, data rate = 500 SPS, HR mode(6), and gain = 6 (unless otherwise noted).
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
ANALOG INPUTS
Input capacitance 20 pF
Input bias current TA = 25°C, input = 1.5 V ±200 pA
TA = 0°C to 70°C, input = 1.5 V ±1 nA
TA = –40°C to +85°C, input = 1.5 V ±1.2 nA
DC input impedance No lead-off 1000 MΩ
Current source lead-off detection 500 MΩ
Pullup resistor lead-off detection 10 MΩ
PGA PERFORMANCE
Gain settings 1, 2, 3, 4, 6, 8, 12
Bandwidth See Table 5
ADC PERFORMANCE
Resolution Data rates up to 8 kSPS, no missing codes 24 Bits
16-kSPS data rate 19 Bits
32-kSPS data rate 17 Bits
Data rate fCLK = 2.048 MHz, HR mode 500 32000 SPS
fCLK = 2.048 MHz, LP mode 250 16000 SPS
DC CHANNEL PERFORMANCE
Input-referred noise Gain = 6(1), 10 seconds of data 5 μVPP
Gain = 6, 256 points, 0.5 seconds of data 4 7 μVPP
Gain settings ≠ 6, data rates≠ 500 SPS See Noise Measurements section
Integral nonlinearity(5) Full-scale with gain = 6, best fit 8 ppm
Full-scale with gain = 6, best fit,
ADS129xR channel 1
40 ppm
–20 dBFS with gain = 6, best fit,
ADS129xR channel 1
8 ppm
Offset error ±500 µV
Offset error drift 2 µV/°C
Gain error Excluding voltage reference error ±0.2 ±0.5 % of FS
Gain drift Excluding voltage reference drift 5 ppm/°C
Gain match between channels 0.3 % of FS
AC CHANNEL PERFORMANCE
CMRR Common-mode rejection ratio fCM = 50 Hz, 60 Hz(2) –105 –115 dB
PSRR Power-supply rejection ratio fPS = 50 Hz, 60 Hz 90 dB
Crosstalk fIN = 50 Hz, 60 Hz –126 dB
SNR Signal-to-noise ratio fIN = 10 Hz input, gain = 6 112 dB
THD Total harmonic distortion(5) 10 Hz, –0.5 dBFs –98 dB
ADS129xR channel 1, 10 Hz, –0.5 dBFs –70 dB
100 Hz, –0.5 dBFs(4) –100 dB
ADS129xR channel 1, 100 Hz, –0.5 dBFs(4) –68 dB
ADS129xR channel 1, 100 Hz, –20 dBFs(4) –86 dB
DIGITAL FILTER
–3-dB bandwidth 0.262 fDR Hz
Digital filter settling Full setting 4 Conversions
RIGHT LEG DRIVE (RLD) AMPLIFIER AND PACE AMPLIFIERS
RLD integrated noise BW = 150 Hz 7 μVRMS
Pace integrated noise BW = 8 kHz 20 µVRMS
Pace-amplifier crosstalk Crosstalk between pace amplifiers 60 dB
Gain bandwidth product 50 kΩ || 10 pF load, gain = 1 100 kHz
Slew rate 50 kΩ || 10 pF load, gain = 1 0.25 V/μs
Pace and RLD amplifier drive strength Short circuit to GND (AVDD = 3 V) 270 μA
Short circuit to supply (AVDD = 3 V) 550 μA
Short circuit to GND (AVDD = 5 V) 490 μA
Short circuit to supply (AVDD = 5 V) 810 μA
Pace and RLD current Peak swing (AVSS + 0.3 V to AVDD + 0.3 V)
at AVDD = 3 V
50 μA
Peak swing (AVSS + 0.3 V to AVDD + 0.3 V)
at AVDD = 5 V
75 μA
Pace-amplifier output resistance 100 Ω
Total harmonic distortion fIN = 100 Hz, gain = 1 –70 dB
Common-mode input range AVSS + 0.7 AVDD – 0.3 V
Common-mode resistor matching Internal 200-kΩ resistor matching 0.1%
Short-circuit current ±0.25 mA
Quiescent power consumption Either RLD or pace amplifier 20 μA
WILSON CENTRAL TERMINAL (WCT) AMPLIFIER
Integrated noise BW = 150 Hz See Table 6 nV/√Hz
Gain bandwidth product See Table 6 kHz
Slew rate See Table 6 V/s
Total harmonic distortion fIN = 100 Hz 90 dB
Common-mode input range AVSS + 0.3 AVDD – 0.3 V
Short-circuit current Through internal 30-kΩ resistor ±0.25 mA
Quiescent power consumption See Table 6 μA
LEAD-OFF DETECT
Frequency See Table 16 for settings 0, fDR/4 kHz
Current See Table 16 for settings 6, 12, 18, 24 nA
Current accuracy ±20%
Comparator threshold accuracy ±30 mV
RESPIRATION (ADS129xR ONLY)
Frequency Internal source 32, 64 kHz
External source 32 64 kHz
Phase shift See Table 16 for settings 22.5 90 157.5 Degrees
Impedance range IRESP = 30 μA 10 kΩ
Impedance measurement noise 0.05-Hz to 2-Hz brick wall filter, 32-kHz modulation clock, phase = 112.5, IRESP = 30 μA with 2-kΩ baseline load, gain = 4 20 mΩPP
Modulator current internal reference, signal path = 82 kΩ,
baseline = 2.21 kΩ
29 µA
EXTERNAL REFERENCE
Input impedance 10 kΩ
INTERNAL REFERENCE
Output voltage Register bit CONFIG3.VREF_4V = 0,
AVDD ≥ 2.7 V
2.4 V
Register bit CONFIG3.VREF_4V = 1,
AVDD ≥ 4.4 V
4 V
VREF accuracy ±0.2%
Internal reference drift TA = 25°C 35 ppm/°C
Commercial grade, 0°C to 70°C 35 ppm
Industrial grade, –40°C to 85°C 45 ppm
Start-up time 150 ms
SYSTEM MONITORS
Analog-supply reading error 2%
Digital-supply reading error 2%
Device wakeup From power up to DRDY low 150 ms
STANDBY mode 9 ms
Temperature-sensor reading, voltage TA = 25°C 145 mV
Temperature-sensor reading, coefficient 490 μV/°C
Test-signal frequency See Table 16 for settings fCLK / 221, fCLK / 220 Hz
Test-signal voltage See Table 16 for settings ±1, ±2 mV
Test-signal accuracy ±2%
CLOCK
Internal-oscillator clock frequency Nominal frequency 2.048 MHz
Internal clock accuracy TA = 25°C ±0.5%
0°C ≤ TA ≤ 70°C ±2%
–40°C ≤ TA ≤ 85°C, industrial grade versions only ±2.5%
Internal-oscillator start-up time 20 μs
Internal-oscillator power consumption 120 μW
DIGITAL INPUT/OUTPUT (DVDD = 1.65 V to 3.6 V)
VIH High-level inpout voltage 0.8 DVDD DVDD + 0.1 V
VIL Low-level input voltage –0.1 0.2 DVDD V
VOH High-level output voltage IOH = –500 μA DVDD – 0.4 V
VOL Low-level output voltage IOL = 500 μA 0.4 V
IIN Input current 0 V < VDigitalInput < DVDD –10 10 μA
POWER SUPPLY (RLD, WCT, AND PACE AMPLIFIERS TURNED OFF)
IAVDD AVDD current AVDD – AVSS = 3 V HR mode (ADS1298) 2.75 mA
LP mode(6) (ADS1298) 1.8 mA
AVDD – AVSS = 5 V HR mode (ADS1298) 3.1 mA
LP mode (ADS1298) 2.1 mA
IDVDD DVDD current DVDD = 1.8 V HR mode (ADS1298) 0.3 mA
LP mode (ADS1298) 0.3 mA
DVDD = 3 V HR mode (ADS1298) 0.5 mA
LP mode (ADS1298) 0.5 mA
Power dissipation ADS1298, ADS1298R, AVDD – AVSS = 3 V HR mode 8.8 9.5 mW
LP mode (250 SPS) 6.0 7.0 mW
ADS1296, ADS1296R, AVDD – AVSS = 3 V HR mode 7.2 7.9 mW
LP mode (250 SPS) 5.3 6.6 mW
ADS1294, ADS1294R, AVDD – AVSS = 3 V HR mode 5.4 6 mW
LP mode (250 SPS) 4.1 4.4 mW
ADS1298, ADS1298R, AVDD – AVSS = 5 V HR mode 17.5 mW
LP mode (250 SPS) 12.5 mW
ADS1296, ADS1296R, AVDD – AVSS = 5 V HR mode 14.1 mW
LP mode (250 SPS) 10 mW
ADS1294, ADS1294R, AVDD – AVSS = 5 V HR mode 10.1 mW
LP mode (250 SPS) 8.3 mW
Power-down AVDD – AVSS = 3 V 10 μW
AVDD – AVSS = 5 V 20 μW
Standby mode AVDD – AVSS = 3 V 2 mW
AVDD – AVSS = 5 V 4 mW
Quiescent channel power AVDD – AVSS = 3 V, PGA + ADC 818 μW
AVDD – AVSS = 5 V, PGA + ADC 1.5 mW
(1) Noise data measured in a 10-second interval. Test not performed in production. Input-referred noise is calculated with input shorted (without electrode resistance) over a 10-second interval.
(2) CMRR is measured with a common-mode signal of AVSS + 0.3 V to AVDD – 0.3 V. The values indicated are the maximum of the eight channels.
(3) Performance is applicable for 5-V operation as well. Production testing for limits is performed at 3 V.
(4) Harmonics above the second harmonic are attenuated by the digital filter.
(5) The presence of internal demodulation circuitry on channel 1 causes degradation of INL and THD. The effect is pronounced for full-scale signals and is less for small ECG-type signals.
(6) LP mode = low-power mode.

7.6 Timing Requirements: Serial Interface

specifications apply from TA = –40°C to +85°C (unless otherwise noted); load on DOUT = 20 pF || 100 kΩ
2.7 V ≤ DVDD ≤ 3.6 V 1.65 V ≤ DVDD ≤ 2 V UNIT
MIN MAX MIN MAX
tCLK Master clock period 414 514 414 514 ns
tCSSC CS low to first SCLK, setup time 6 17 ns
tSCLK SCLK period 50 66.6 ns
tSPWH, L SCLK pulse width, high and low 15 25 ns
tDIST DIN valid to SCLK falling edge: setup time 10 10 ns
tDIHD Valid DIN after SCLK falling edge: hold time 10 11 ns
tCSH CS high pulse 2 2 tCLK
tSCCS Eighth SCLK falling edge to CS high 4 4 tCLK
tSDECODE Command decode time 4 4 tCLK
tDISCK2ST DAISY_IN valid to SCLK rising edge: setup time 10 10 ns
tDISCK2HT DAISY_IN valid after SCLK rising edge: hold time 10 10 ns

7.7 Switching Characteristics: Serial Interface

specifications apply from TA = –40°C to +85°C (unless otherwise noted). Load on DOUT = 20 pF || 100 kΩ.
PARAMETER 2.7 V ≤ DVDD ≤ 3.6 V 1.65 V ≤ DVDD ≤ 2 V UNIT
MIN MAX MIN MAX
tDOHD SCLK falling edge to invalid DOUT: hold time 10 10 ns
tDOPD SCLK rising edge to DOUT valid: setup time 17 32 ns
tCSDOD CS low to DOUT driven 10 20 ns
tCSDOZ CS high to DOUT Hi-Z 10 20 ns
ADS1294 ADS1294R ADS1296 ADS1296R ADS1298 ADS1298R tim_serial_bas459.gif
NOTE: SPI settings are CPOL = 0 and CPHA = 1.
Figure 1. Serial Interface Timing
ADS1294 ADS1294R ADS1296 ADS1296R ADS1298 ADS1298R tim_daisy_bas459.gif
NOTE: Daisy-chain timing shown for eight-channel ADS1298 and ADS1298R.
Figure 2. Daisy-Chain Interface Timing

7.8 Typical Characteristics

at TA = 25°C, AVDD = 3 V, AVSS = 0 V, DVDD = 1.8 V, internal VREFP = 2.4 V, VREFN = AVSS, external clock = 2.048 MHz, data rate = 500 SPS, high-resolution mode, and gain = 6 (unless otherwise noted)
ADS1294 ADS1294R ADS1296 ADS1296R ADS1298 ADS1298R tc_in_ref_noise_bas459.gif
Figure 3. Input-Referred Noise
ADS1294 ADS1294R ADS1296 ADS1296R ADS1298 ADS1298R tc_iref-tmp_bas459.gif
Figure 5. Internal Reference vs Temperature
ADS1294 ADS1294R ADS1296 ADS1296R ADS1298 ADS1298R tc_curr_nowct-vcm_bas459.gif
Figure 7. Leakage Current vs Input Voltage
ADS1294 ADS1294R ADS1296 ADS1296R ADS1298 ADS1298R tc_psrr-frq_bas459.gif
Figure 9. PSRR vs Frequency
ADS1294 ADS1294R ADS1296 ADS1296R ADS1298 ADS1298R tc_inl-pga_g_bas459.gif
Figure 11. INL vs PGA Gain
ADS1294 ADS1294R ADS1296 ADS1296R ADS1298 ADS1298R tc_ospec_dr110_bas459.gif
Figure 13. THD FFT Plot (60-Hz Signal)
ADS1294 ADS1294R ADS1296 ADS1296R ADS1298 ADS1298R tc_oset-pga_bas459.gif
Figure 15. Offset vs PGA Gain (Absolute Value)
ADS1294 ADS1294R ADS1296 ADS1296R ADS1298 ADS1298R tc_histo_thresh_loff_bas459.gif
Figure 17. Lead-Off Comparator Threshold Accuracy
ADS1294 ADS1294R ADS1296 ADS1296R ADS1298 ADS1298R tc_inl-range_bas459.gif
Figure 19. ADS129xR Nonlinearity
ADS1294 ADS1294R ADS1296 ADS1296R ADS1298 ADS1298R tc_thd-chan_bas459.gif
Figure 21. ADS129xR THD
ADS1294 ADS1294R ADS1296 ADS1296R ADS1298 ADS1298R C001_SBAS561.png
Figure 23. Internal VREF Drift vs Temperature
ADS1294 ADS1294R ADS1296 ADS1296R ADS1298 ADS1298R tc_histo_10s_noise_bas459.gif
Figure 4. Noise Histogram
ADS1294 ADS1294R ADS1296 ADS1296R ADS1298 ADS1298R tc_cmrr-frq_dr4_bas459.gif
Figure 6. CMRR vs Frequency
ADS1294 ADS1294R ADS1296 ADS1296R ADS1298 ADS1298R tc_curr_nowct-tmp_bas459.gif
Figure 8. Leakage Current vs Temperature
ADS1294 ADS1294R ADS1296 ADS1296R ADS1298 ADS1298R tc_thd-frq_bas459.gif
Figure 10. THD vs Frequency
ADS1294 ADS1294R ADS1296 ADS1296R ADS1298 ADS1298R tc_inl-tmp_bas459.gif
Figure 12. INL vs Temperature
ADS1294 ADS1294R ADS1296 ADS1296R ADS1298 ADS1298R tc_ospec_dr000_bas459.gif
Figure 14. FFT Plot (60-Hz Signal)
ADS1294 ADS1294R ADS1296 ADS1296R ADS1298 ADS1298R tc_histo_test_amp_bas459.gif
Figure 16. Test-Signal Amplitude Accuracy
ADS1294 ADS1294R ADS1296 ADS1296R ADS1298 ADS1298R tc_histo_loff_bas459.gif
Figure 18. Lead-Off Current-Source Accuracy Distribution
ADS1294 ADS1294R ADS1296 ADS1296R ADS1298 ADS1298R tc_chan_pwr_bas459.gif
Figure 20. ADS1298 and ADS1298R Channel Power
ADS1294 ADS1294R ADS1296 ADS1296R ADS1298 ADS1298R tc_snr-inamp_bas459.gif
Figure 22. SNR vs Input Amplitude
(10-Hz Sine Wave)

8 Parameter Measurement Information

8.1 Noise Measurements

NOTE

The ADS129xR channel performance differs from the ADS129x in regards to respiration circuitry found on channel one. Unless otherwise noted, ADS129x refers to all specifications and functional descriptions of the ADS1294, ADS1296, ADS1298, ADS1294R, ADS1296R, and ADS1298R. ADS129xR refers to all specifications and functional descriptions of only the ADS1294R, ADS1296R, and ADS1298R.

Optimize the ADS129x noise performance by adjusting the data rate and PGA setting. Reduce the data rate to increase the averaging, and the noise drops correspondingly. Increase the PGA value to reduce the input-referred noise. This lowered noise level is particularly useful when measuring low-level biopotential signals. Table 1 and Table 2 summarize the noise performance of the ADS129x in high-resolution (HR) mode and low-power (LP) mode, respectively, with a 3-V analog power supply. Table 3 and Table 4 summarize the noise performance of the ADS129x in HR and LP modes, respectively, with a 5-V analog power supply. The data are representative of typical noise performance at TA = 25°C. The data shown are the result of averaging the readings from multiple devices and are measured with the inputs shorted together. A minimum of 1000 consecutive readings are used to calculate the RMS and peak-to-peak noise for each reading. For the two highest data rates, the noise is limited by quantization noise of the ADC and does not have a gaussian distribution. Thus, the ratio between rms noise and peak-to-peak noise is approximately 10. For the lower data rates, the ratio is approximately 6.6.

Table 1 to Table 4 show measurements taken with an internal reference. The data are also representative of the ADS129x noise performance when using a low-noise external reference such as the REF5025.

Table 1. Input-Referred Noise μVRMS (μVPP) in High-Resolution Mode
3-V Analog Supply and 2.4-V Reference(1)

DR BITS OF CONFIG1 REGISTER OUTPUT DATA RATE (SPS) –3-dB BANDWIDTH (Hz) PGA
GAIN = 1
PGA
GAIN = 2
PGA
GAIN = 3
PGA
GAIN = 4
PGA
GAIN = 6
PGA
GAIN = 8
PGA
GAIN = 12
000 32000 8398 335 (3553) 168 (1701) 112 (1100) 85 (823) 58 (529) 42.5 (378) 28.6 (248)
001 16000 4193 56 (613) 28 (295) 18.8 (188) 14.3 (143) 9.7 (94) 7.4 (69) 5.2 (44.3)
010 8000 2096 12.4 (111) 6.5 (54) 4.5 (37.9) 3.5 (29.7) 2.6 (21.7) 2.2 (17.8) 1.8 (13.8)
011 4000 1048 6.1 (44.8) 3.2 (23.3) 2.4 (17.1) 1.9 (14) 1.5 (11.1) 1.3 (9.7) 1.2 (8.5)
100 2000 524 4.1 (27.8) 2.2 (15.4) 1.6 (11) 1.3 (9.1) 1.1 (7.3) 1 (6.5) 0.9 (6)
101 1000 262 2.9 (19) 1.6 (10.1) 1.2 (7.5) 1 (6.2) 0.8 (5) 0.7 (4.6) 0.6 (4.1)
110 500 131 2.1 (12.5) 1.1 (6.8) 0.9 (5.1) 0.7 (4.3) 0.6 (3.5) 0.5 (3.1) 0.5 (2.9)
(1) At least 1000 consecutive readings used to calculate the RMS and peak-to-peak noise values in this table.

Table 2. Input-Referred Noise μVRMS (μVPP) in Low-Power Mode
3-V Analog Supply and 2.4-V Reference(1)

DR BITS OF CONFIG1 REGISTER OUTPUT DATA RATE (SPS) –3-dB BANDWIDTH (Hz) PGA
GAIN = 1
PGA
GAIN = 2
PGA
GAIN = 3
PGA
GAIN = 4
PGA
GAIN = 6
PGA
GAIN = 8
PGA
GAIN = 12
000 16000 4193 333 (3481) 166 (1836) 111 (1168) 84 (834) 56 (576) 42 (450) 28 (284)
001 8000 2096 56 (554) 28 (272) 19 (177) 14.3 (133) 9.7 (85) 7.4 (64) 5 (42.4)
010 4000 1048 12.5 (99) 6.5 (51) 4.5 (35) 3.4 (25.9) 2.4 (18.8) 2 (14.5) 1.5 (11.3)
011 2000 524 6.1 (41.8) 3.2 (22.2) 2.3 (15.9) 1.8 (12.1) 1.4 (9.3) 1.2 (7.8) 1 (6.7)
100 1000 262 4.1 (26.3) 2.2 (14.6) 1.6 (9.9) 1.3 (8.1) 1 (6.2) 0.8 (5.4) 0.7 (4.7)
101 500 131 3 (17.9) 1.6 (9.8) 1.1 (6.8) 0.9 (5.7) 0.7 (4.2) 0.6 (3.6) 0.5 (3.4)
110 250 65 2.1 (11.9) 1.1 (6.3) 0.8 (4.6) 0.7 (4) 0.5 (3) 0.5 (2.6) 0.4 (2.4)
(1) At least 1000 consecutive readings used to calculate the RMS and peak-to-peak noise values in this table.

Table 3. Input-Referred Noise μVRMS (μVPP) in High-Resolution Mode
5-V Analog Supply and 4-V Reference(1)

DR BITS OF CONFIG1 REGISTER OUTPUT DATA RATE (SPS) –3-dB BANDWIDTH (Hz) PGA
GAIN = 1
PGA
GAIN = 2
PGA
GAIN = 3
PGA
GAIN = 4
PGA
GAIN = 6
PGA
GAIN = 8
PGA
GAIN = 12
000 32000 8398 521 (5388) 260 (2900) 173 (1946) 130 (1403) 87 (917) 65 (692) 44 (483)
001 16000 4193 86 (1252) 43 (633) 29 (402) 22 (298) 15 (206) 11 (141) 7 (91)
010 8000 2096 17 (207) 9 (112) 6 (71) 4 (57) 3 (36) 3 (29) 2 (18)
011 4000 1048 6.4 (48.2) 3.4 (25.9) 2.417.7) 1.9 (15.4) 1.5 (11.2) 1.3 (9.6) 1.1 (8.2)
100 2000 524 4.2 (29.9) 2.3 (15.9) 1.6 (11.1) 1.3 (9.3) 1 (7.5) 0.9 (6.6) 0.8 (5.8)
101 1000 262 2.9 (18.8) 1.6 (10.4) 1.1 (7.8) 0.9 (6.1) 0.7 (4.9) 0.6 (4.7) 0.6 (3.9)
110 500 131 2 (12.8) 1.1 (7.2) 0.8 (5.2) 0.7 (4) 0.5 (3.3) 0.5 (3.3) 0.4 (2.7)
(1) At least 1000 consecutive readings used to calculate the RMS and peak-to-peak noise values in this table.

Table 4. Input-Referred Noise μVRMS (μVPP) in Low-Power Mode
5-V Analog Supply and 4-V Reference(1)

DR BITS OF CONFIG1 REGISTER OUTPUT DATA RATE (SPS) –3-dB BANDWIDTH (Hz) PGA
GAIN = 1
PGA
GAIN = 2
PGA
GAIN = 3
PGA
GAIN = 4
PGA
GAIN = 6
PGA
GAIN = 8
PGA
GAIN = 12
000 16000 4193 526 (5985) 263 (2953) 175 (1918) 132 (1410) 88 (896) 66 (681) 44 (458)
001 8000 2096 88 (1201) 44 (619) 29 (411) 22 (280) 15 (191) 11 (139) 7 (83)
010 4000 1048 17 (208) 9 (103) 6 (62) 4 (52) 3 (37) 2 (25) 2 (16)
011 2000 524 6 (41.1) 3.3 (23.3) 2.2 (15.5) 1.8 (12.3) 1.3 (9.8) 1.1 (7.8) 0.9 (6.5)
100 1000 262 4.1 (27.1) 2.3 (14.8) 1.5 (10.1) 1.2 (8.1) 0.9 (6) 0.8 (5.4) 0.7 (4.4)
101 500 131 2.9 (17.4) 1.6 (9.6) 1.1 (6.6) 0.9 (5.9) 0.7 (4.3) 0.6 (3.4) 0.5 (3.2)
110 250 65 2.1 (11.9) 1.1 (6.6) 0.8 (4.6) 0.6 (3.7) 0.5 (3) 0.4 (2.5) 0.4 (2.2)
(1) At least 1000 consecutive readings used to calculate the RMS and peak-to-peak noise values in this table.

 

Texas Instruments

© Copyright 1995-2025 Texas Instruments Incorporated. All rights reserved.
Submit documentation feedback | IMPORTANT NOTICE | Trademarks | Privacy policy | Cookie policy | Terms of use | Terms of sale