SBAS459K January   2010  – August 2015 ADS1294 , ADS1294R , ADS1296 , ADS1296R , ADS1298 , ADS1298R

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Device Comparison
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Timing Requirements: Serial Interface
    7. 7.7 Switching Characteristics: Serial Interface
    8. 7.8 Typical Characteristics
  8. Parameter Measurement Information
    1. 8.1 Noise Measurements
  9. Detailed Description
    1. 9.1 Overview
    2. 9.2 Functional Block Diagram
    3. 9.3 Feature Description
      1. 9.3.1 Analog Functionality
        1. 9.3.1.1 EMI Filter
        2. 9.3.1.2 Analog Input Structure
        3. 9.3.1.3 Input Multiplexer
          1. 9.3.1.3.1 Device Noise Measurements
          2. 9.3.1.3.2 Test Signals (TestP and TestN)
          3. 9.3.1.3.3 Auxiliary Differential Input (TESTP_PACE_OUT1, TESTN_PACE_OUT2)
          4. 9.3.1.3.4 Temperature Sensor (TempP, TempN)
          5. 9.3.1.3.5 Supply Measurements (MVDDP, MVDDN)
          6. 9.3.1.3.6 Lead-Off Excitation Signals (LoffP, LoffN)
          7. 9.3.1.3.7 Auxiliary Single-Ended Input
        4. 9.3.1.4 Analog Input
        5. 9.3.1.5 PGA Settings and Input Range
          1. 9.3.1.5.1 Input Common-Mode Range
          2. 9.3.1.5.2 Input Differential Dynamic Range
          3. 9.3.1.5.3 ADC Delta-Sigma Modulator
        6. 9.3.1.6 Reference
        7. 9.3.1.7 ECG-Specific Functions
          1. 9.3.1.7.1 Input Multiplexer (Rerouting The Right Leg Drive Signal)
          2. 9.3.1.7.2 Input Multiplexer (Measuring The Right Leg Drive Signal)
          3. 9.3.1.7.3 Wilson Central Terminal (WCT) and Chest Leads
            1. 9.3.1.7.3.1 Augmented Leads
            2. 9.3.1.7.3.2 Right Leg Drive with the WCT Point
          4. 9.3.1.7.4 Lead-Off Detection
            1. 9.3.1.7.4.1 DC Lead-Off
            2. 9.3.1.7.4.2 AC Lead-Off
          5. 9.3.1.7.5 RLD Lead-Off
          6. 9.3.1.7.6 Right Leg Drive (RLD) DC Bias Circuit
            1. 9.3.1.7.6.1 WCT as RLD
            2. 9.3.1.7.6.2 RLD Configuration with Multiple Devices
          7. 9.3.1.7.7 Pace Detect
            1. 9.3.1.7.7.1 Software Approach
            2. 9.3.1.7.7.2 External Hardware Approach
          8. 9.3.1.7.8 Respiration
            1. 9.3.1.7.8.1 External Respiration Circuitry (RESP_CTRL = 01b)
            2. 9.3.1.7.8.2 Internal Respiration Circuitry with Internal Clock (RESP_CTRL = 10b, ADS129xR Only)
            3. 9.3.1.7.8.3 Internal Respiration Circuitry With User-Generated Signals (RESP_CTRL = 11b, ADS129xR Only)
      2. 9.3.2 Digital Functionality
        1. 9.3.2.1 GPIO Pins (GPIO[4:1])
        2. 9.3.2.2 Power-Down Pin (PWDN)
        3. 9.3.2.3 Reset (RESET Pin and Reset Command)
        4. 9.3.2.4 Digital Decimation Filter
          1. 9.3.2.4.1 Sinc Filter Stage (sinx / x)
        5. 9.3.2.5 Clock
    4. 9.4 Device Functional Modes
      1. 9.4.1 Data Acquisition
        1. 9.4.1.1 Start Mode
          1. 9.4.1.1.1 Settling Time
        2. 9.4.1.2 Data Ready Pin (DRDY)
        3. 9.4.1.3 Data Retrieval
          1. 9.4.1.3.1 Status Word
          2. 9.4.1.3.2 Readback Length
          3. 9.4.1.3.3 Data Format
        4. 9.4.1.4 Single-Shot Mode
        5. 9.4.1.5 Continuous Conversion Mode
      2. 9.4.2 Multiple-Device Configuration
        1. 9.4.2.1 Cascade Configuration
        2. 9.4.2.2 Daisy-Chain Configuration
    5. 9.5 Programming
      1. 9.5.1 SPI Interface
        1. 9.5.1.1 Chip Select Pin (CS)
        2. 9.5.1.2 Serial Clock (SCLK)
          1. 9.5.1.2.1 SCLK Clocking Methods
        3. 9.5.1.3 Data Input Pin (DIN)
        4. 9.5.1.4 Data Output Pin (DOUT)
      2. 9.5.2 SPI Command Definitions
        1. 9.5.2.1  WAKEUP: Exit Standby Mode
        2. 9.5.2.2  STANDBY: Enter Standby Mode
        3. 9.5.2.3  RESET: Reset Registers to Default Values
        4. 9.5.2.4  START: Start Conversions
        5. 9.5.2.5  STOP: Stop Conversions
        6. 9.5.2.6  RDATAC: Read Data Continuous
        7. 9.5.2.7  SDATAC: Stop Read Data Continuous
        8. 9.5.2.8  RDATA: Read Data
        9. 9.5.2.9  Sending Multibyte Commands
        10. 9.5.2.10 RREG: Read From Register
        11. 9.5.2.11 WREG: Write to Register
    6. 9.6 Register Maps
      1. 9.6.1 Register Descriptions
        1. 9.6.1.1  ID: ID Control Register (address = 00h) (reset = xxh)
        2. 9.6.1.2  CONFIG1: Configuration Register 1 (address = 01h) (reset = 06h)
        3. 9.6.1.3  CONFIG2: Configuration Register 2 (address = 02h) (reset = 40h)
        4. 9.6.1.4  CONFIG3: Configuration Register 3 (address = 03h) (reset = 40h)
        5. 9.6.1.5  LOFF: Lead-Off Control Register (address = 04h) (reset = 00h)
        6. 9.6.1.6  CHnSET: Individual Channel Settings (n = 1 to 8) (address = 05h to 0Ch) (reset = 00h)
        7. 9.6.1.7  RLD_SENSP: RLD Positive Signal Derivation Register (address = 0Dh) (reset = 00h)
        8. 9.6.1.8  RLD_SENSN: RLD Negative Signal Derivation Register (address = 0Eh) (reset = 00h)
        9. 9.6.1.9  LOFF_SENSP: Positive Signal Lead-Off Detection Register (address = 0Fh) (reset = 00h)
        10. 9.6.1.10 LOFF_SENSN: Negative Signal Lead-Off Detection Register (address = 10h) (reset = 00h)
        11. 9.6.1.11 LOFF_FLIP: Lead-Off Flip Register (address = 11h) (reset = 00h)
        12. 9.6.1.12 LOFF_STATP: Lead-Off Positive Signal Status Register (address = 12h) (reset = 00h)
        13. 9.6.1.13 LOFF_STATN: Lead-Off Negative Signal Status Register (address = 13h) (reset = 00h)
        14. 9.6.1.14 GPIO: General-Purpose I/O Register (address = 14h) (reset = 0Fh)
        15. 9.6.1.15 PACE: Pace Detect Register (address = 15h) (reset = 00h)
        16. 9.6.1.16 RESP: Respiration Control Register (address = 16h) (reset = 00h)
        17. 9.6.1.17 CONFIG4: Configuration Register 4 (address = 17h) (reset = 00h)
        18. 9.6.1.18 WCT1: Wilson Central Terminal and Augmented Lead Control Register (address = 18h) (reset = 00h)
        19. 9.6.1.19 WCT2: Wilson Central Terminal Control Register (address = 18h) (reset = 00h)
  10. 10Application and Implementation
    1. 10.1 Application Information
      1. 10.1.1 Setting the Device for Basic Data Capture
        1. 10.1.1.1 Lead-Off
        2. 10.1.1.2 Right Leg Drive
        3. 10.1.1.3 Pace Detection
      2. 10.1.2 Establishing the Input Common-Mode
      3. 10.1.3 Antialiasing
    2. 10.2 Typical Applications
      1. 10.2.1 ADS129xR Respiration Measurement Using Internal Modulation Circuitry
        1. 10.2.1.1 Design Requirements
        2. 10.2.1.2 Detailed Design Procedure
        3. 10.2.1.3 Application Curve
      2. 10.2.2 Software-Based Artificial Pacemaker Detection Using the PACEOUT Pins on the ADS129x
        1. 10.2.2.1 Design Requirements
        2. 10.2.2.2 Detailed Design Procedure
        3. 10.2.2.3 Application Curve
  11. 11Power Supply Recommendations
    1. 11.1 Power-Up Sequencing
    2. 11.2 Connecting to Unipolar (3 V or 1.8 V) Supplies
    3. 11.3 Connecting to Bipolar (±1.5 V or ±1.8 V) Supplies
  12. 12Layout
    1. 12.1 Layout Guidelines
    2. 12.2 Layout Example
  13. 13Device and Documentation Support
    1. 13.1 Related Links
    2. 13.2 Community Resources
    3. 13.3 Trademarks
    4. 13.4 Electrostatic Discharge Caution
    5. 13.5 Glossary
  14. 14Mechanical, Packaging, and Orderable Information

7 Specifications

7.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)
MIN MAX UNIT
AVDD to AVSS –0.3 5.5 V
DVDD to DGND –0.3 3.9 V
AVSS to DGND –3 0.2 V
VREFP input to AVSS AVSS – 0.3 AVDD + 0.3 V
Analog input voltage AVSS – 0.3 AVDD + 0.3 V
Digital input voltage DGND – 0.3 DVDD + 0.3 V
Digital output voltage DGND – 0.3 DVDD + 0.3 V
Input current (momentary) 100 mA
Input current (continuous) 10 mA
Junction temperature, TJ –40 150 °C
Storage temperature, Tstg –60 150 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

7.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins(1) ±2000 V
Charged device model (CDM), per JEDEC specification JESD22-C101, all pins(2) ±500
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions

over operating ambient temperature range (unless otherwise noted)
MIN NOM MAX UNIT
POWER SUPPLY
Analog power supply (AVDD – AVSS) 2.7 3 5.25 V
Digital power supply (DVDD) 1.65 1.8 3.6 V
AVDD – DVDD –2.1 3.6 V
ANALOG INPUTS
Full-scale differential input voltage range (AINP – AINN) ±VREF / Gain V
Common-mode input voltage See the Input Common-Mode Range subsection of the PGA Settings and Input Range section
VOLTAGE REFERENCE INPUTS
Differential reference voltage 3-V supply VREF = (VREFP – VREFN) 2.5 V
5-V supply VREF = (VREFP – VREFN) 4 V
Negative input (VREFN) AVSS V
Positive input (VREFP) AVSS + 2.5 V
CLOCK INPUT
External clock input frequency CLKSEL pin = 0 1.94 2.048 2.25 MHz
DIGITAL INPUTS
Input Voltage DGND DVDD V
TEMPERATURE RANGE
Operating temperature range Commercial grade 0 70 °C
Industrial grade –40 85 °C

7.4 Thermal Information

THERMAL METRIC(1) ADS129x, ADS129xR UNIT
PAG (TQFP) ZXG (NFBGA)
64 PINS 64 PINS
RθJA Junction-to-ambient thermal resistance 35 48 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 31 8 °C/W
RθJB Junction-to-board thermal resistance 26 25 °C/W
ψJT Junction-to-top characterization parameter 0.1 0.5 °C/W
ψJB Junction-to-board characterization parameter N/A 22 °C/W
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

7.5 Electrical Characteristics

Min and max specifications apply for all commercial grade (TA = 0°C to 70°C) devices, and from TA = –40°C to +85°C for industrial-grade devices. Typical specifications at TA = 25°C. All specifications at DVDD = 1.8 V, AVDD – AVSS = 3 V(3),
VREF = 2.4 V, external fCLK = 2.048 MHz, data rate = 500 SPS, HR mode(6), and gain = 6 (unless otherwise noted).
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
ANALOG INPUTS
Input capacitance 20 pF
Input bias current TA = 25°C, input = 1.5 V ±200 pA
TA = 0°C to 70°C, input = 1.5 V ±1 nA
TA = –40°C to +85°C, input = 1.5 V ±1.2 nA
DC input impedance No lead-off 1000
Current source lead-off detection 500
Pullup resistor lead-off detection 10
PGA PERFORMANCE
Gain settings 1, 2, 3, 4, 6, 8, 12
Bandwidth See Table 5
ADC PERFORMANCE
Resolution Data rates up to 8 kSPS, no missing codes 24 Bits
16-kSPS data rate 19 Bits
32-kSPS data rate 17 Bits
Data rate fCLK = 2.048 MHz, HR mode 500 32000 SPS
fCLK = 2.048 MHz, LP mode 250 16000 SPS
DC CHANNEL PERFORMANCE
Input-referred noise Gain = 6(1), 10 seconds of data 5 μVPP
Gain = 6, 256 points, 0.5 seconds of data 4 7 μVPP
Gain settings ≠ 6, data rates≠ 500 SPS See Noise Measurements section
Integral nonlinearity(5) Full-scale with gain = 6, best fit 8 ppm
Full-scale with gain = 6, best fit,
ADS129xR channel 1
40 ppm
–20 dBFS with gain = 6, best fit,
ADS129xR channel 1
8 ppm
Offset error ±500 µV
Offset error drift 2 µV/°C
Gain error Excluding voltage reference error ±0.2 ±0.5 % of FS
Gain drift Excluding voltage reference drift 5 ppm/°C
Gain match between channels 0.3 % of FS
AC CHANNEL PERFORMANCE
CMRR Common-mode rejection ratio fCM = 50 Hz, 60 Hz(2) –105 –115 dB
PSRR Power-supply rejection ratio fPS = 50 Hz, 60 Hz 90 dB
Crosstalk fIN = 50 Hz, 60 Hz –126 dB
SNR Signal-to-noise ratio fIN = 10 Hz input, gain = 6 112 dB
THD Total harmonic distortion(5) 10 Hz, –0.5 dBFs –98 dB
ADS129xR channel 1, 10 Hz, –0.5 dBFs –70 dB
100 Hz, –0.5 dBFs(4) –100 dB
ADS129xR channel 1, 100 Hz, –0.5 dBFs(4) –68 dB
ADS129xR channel 1, 100 Hz, –20 dBFs(4) –86 dB
DIGITAL FILTER
–3-dB bandwidth 0.262 fDR Hz
Digital filter settling Full setting 4 Conversions
RIGHT LEG DRIVE (RLD) AMPLIFIER AND PACE AMPLIFIERS
RLD integrated noise BW = 150 Hz 7 μVRMS
Pace integrated noise BW = 8 kHz 20 µVRMS
Pace-amplifier crosstalk Crosstalk between pace amplifiers 60 dB
Gain bandwidth product 50 kΩ || 10 pF load, gain = 1 100 kHz
Slew rate 50 kΩ || 10 pF load, gain = 1 0.25 V/μs
Pace and RLD amplifier drive strength Short circuit to GND (AVDD = 3 V) 270 μA
Short circuit to supply (AVDD = 3 V) 550 μA
Short circuit to GND (AVDD = 5 V) 490 μA
Short circuit to supply (AVDD = 5 V) 810 μA
Pace and RLD current Peak swing (AVSS + 0.3 V to AVDD + 0.3 V)
at AVDD = 3 V
50 μA
Peak swing (AVSS + 0.3 V to AVDD + 0.3 V)
at AVDD = 5 V
75 μA
Pace-amplifier output resistance 100 Ω
Total harmonic distortion fIN = 100 Hz, gain = 1 –70 dB
Common-mode input range AVSS + 0.7 AVDD – 0.3 V
Common-mode resistor matching Internal 200-kΩ resistor matching 0.1%
Short-circuit current ±0.25 mA
Quiescent power consumption Either RLD or pace amplifier 20 μA
WILSON CENTRAL TERMINAL (WCT) AMPLIFIER
Integrated noise BW = 150 Hz See Table 6 nV/√Hz
Gain bandwidth product See Table 6 kHz
Slew rate See Table 6 V/s
Total harmonic distortion fIN = 100 Hz 90 dB
Common-mode input range AVSS + 0.3 AVDD – 0.3 V
Short-circuit current Through internal 30-kΩ resistor ±0.25 mA
Quiescent power consumption See Table 6 μA
LEAD-OFF DETECT
Frequency See Table 16 for settings 0, fDR/4 kHz
Current See Table 16 for settings 6, 12, 18, 24 nA
Current accuracy ±20%
Comparator threshold accuracy ±30 mV
RESPIRATION (ADS129xR ONLY)
Frequency Internal source 32, 64 kHz
External source 32 64 kHz
Phase shift See Table 16 for settings 22.5 90 157.5 Degrees
Impedance range IRESP = 30 μA 10
Impedance measurement noise 0.05-Hz to 2-Hz brick wall filter, 32-kHz modulation clock, phase = 112.5, IRESP = 30 μA with 2-kΩ baseline load, gain = 4 20 PP
Modulator current internal reference, signal path = 82 kΩ,
baseline = 2.21 kΩ
29 µA
EXTERNAL REFERENCE
Input impedance 10
INTERNAL REFERENCE
Output voltage Register bit CONFIG3.VREF_4V = 0,
AVDD ≥ 2.7 V
2.4 V
Register bit CONFIG3.VREF_4V = 1,
AVDD ≥ 4.4 V
4 V
VREF accuracy ±0.2%
Internal reference drift TA = 25°C 35 ppm/°C
Commercial grade, 0°C to 70°C 35 ppm
Industrial grade, –40°C to 85°C 45 ppm
Start-up time 150 ms
SYSTEM MONITORS
Analog-supply reading error 2%
Digital-supply reading error 2%
Device wakeup From power up to DRDY low 150 ms
STANDBY mode 9 ms
Temperature-sensor reading, voltage TA = 25°C 145 mV
Temperature-sensor reading, coefficient 490 μV/°C
Test-signal frequency See Table 16 for settings fCLK / 221, fCLK / 220 Hz
Test-signal voltage See Table 16 for settings ±1, ±2 mV
Test-signal accuracy ±2%
CLOCK
Internal-oscillator clock frequency Nominal frequency 2.048 MHz
Internal clock accuracy TA = 25°C ±0.5%
0°C ≤ TA ≤ 70°C ±2%
–40°C ≤ TA ≤ 85°C, industrial grade versions only ±2.5%
Internal-oscillator start-up time 20 μs
Internal-oscillator power consumption 120 μW
DIGITAL INPUT/OUTPUT (DVDD = 1.65 V to 3.6 V)
VIH High-level inpout voltage 0.8 DVDD DVDD + 0.1 V
VIL Low-level input voltage –0.1 0.2 DVDD V
VOH High-level output voltage IOH = –500 μA DVDD – 0.4 V
VOL Low-level output voltage IOL = 500 μA 0.4 V
IIN Input current 0 V < VDigitalInput < DVDD –10 10 μA
POWER SUPPLY (RLD, WCT, AND PACE AMPLIFIERS TURNED OFF)
IAVDD AVDD current AVDD – AVSS = 3 V HR mode (ADS1298) 2.75 mA
LP mode(6) (ADS1298) 1.8 mA
AVDD – AVSS = 5 V HR mode (ADS1298) 3.1 mA
LP mode (ADS1298) 2.1 mA
IDVDD DVDD current DVDD = 1.8 V HR mode (ADS1298) 0.3 mA
LP mode (ADS1298) 0.3 mA
DVDD = 3 V HR mode (ADS1298) 0.5 mA
LP mode (ADS1298) 0.5 mA
Power dissipation ADS1298, ADS1298R, AVDD – AVSS = 3 V HR mode 8.8 9.5 mW
LP mode (250 SPS) 6.0 7.0 mW
ADS1296, ADS1296R, AVDD – AVSS = 3 V HR mode 7.2 7.9 mW
LP mode (250 SPS) 5.3 6.6 mW
ADS1294, ADS1294R, AVDD – AVSS = 3 V HR mode 5.4 6 mW
LP mode (250 SPS) 4.1 4.4 mW
ADS1298, ADS1298R, AVDD – AVSS = 5 V HR mode 17.5 mW
LP mode (250 SPS) 12.5 mW
ADS1296, ADS1296R, AVDD – AVSS = 5 V HR mode 14.1 mW
LP mode (250 SPS) 10 mW
ADS1294, ADS1294R, AVDD – AVSS = 5 V HR mode 10.1 mW
LP mode (250 SPS) 8.3 mW
Power-down AVDD – AVSS = 3 V 10 μW
AVDD – AVSS = 5 V 20 μW
Standby mode AVDD – AVSS = 3 V 2 mW
AVDD – AVSS = 5 V 4 mW
Quiescent channel power AVDD – AVSS = 3 V, PGA + ADC 818 μW
AVDD – AVSS = 5 V, PGA + ADC 1.5 mW
(1) Noise data measured in a 10-second interval. Test not performed in production. Input-referred noise is calculated with input shorted (without electrode resistance) over a 10-second interval.
(2) CMRR is measured with a common-mode signal of AVSS + 0.3 V to AVDD – 0.3 V. The values indicated are the maximum of the eight channels.
(3) Performance is applicable for 5-V operation as well. Production testing for limits is performed at 3 V.
(4) Harmonics above the second harmonic are attenuated by the digital filter.
(5) The presence of internal demodulation circuitry on channel 1 causes degradation of INL and THD. The effect is pronounced for full-scale signals and is less for small ECG-type signals.
(6) LP mode = low-power mode.

7.6 Timing Requirements: Serial Interface

specifications apply from TA = –40°C to +85°C (unless otherwise noted); load on DOUT = 20 pF || 100 kΩ
2.7 V ≤ DVDD ≤ 3.6 V 1.65 V ≤ DVDD ≤ 2 V UNIT
MIN MAX MIN MAX
tCLK Master clock period 414 514 414 514 ns
tCSSC CS low to first SCLK, setup time 6 17 ns
tSCLK SCLK period 50 66.6 ns
tSPWH, L SCLK pulse width, high and low 15 25 ns
tDIST DIN valid to SCLK falling edge: setup time 10 10 ns
tDIHD Valid DIN after SCLK falling edge: hold time 10 11 ns
tCSH CS high pulse 2 2 tCLK
tSCCS Eighth SCLK falling edge to CS high 4 4 tCLK
tSDECODE Command decode time 4 4 tCLK
tDISCK2ST DAISY_IN valid to SCLK rising edge: setup time 10 10 ns
tDISCK2HT DAISY_IN valid after SCLK rising edge: hold time 10 10 ns

7.7 Switching Characteristics: Serial Interface

specifications apply from TA = –40°C to +85°C (unless otherwise noted). Load on DOUT = 20 pF || 100 kΩ.
PARAMETER 2.7 V ≤ DVDD ≤ 3.6 V 1.65 V ≤ DVDD ≤ 2 V UNIT
MIN MAX MIN MAX
tDOHD SCLK falling edge to invalid DOUT: hold time 10 10 ns
tDOPD SCLK rising edge to DOUT valid: setup time 17 32 ns
tCSDOD CS low to DOUT driven 10 20 ns
tCSDOZ CS high to DOUT Hi-Z 10 20 ns
ADS1294 ADS1294R ADS1296 ADS1296R ADS1298 ADS1298R tim_serial_bas459.gif
NOTE: SPI settings are CPOL = 0 and CPHA = 1.
Figure 1. Serial Interface Timing
ADS1294 ADS1294R ADS1296 ADS1296R ADS1298 ADS1298R tim_daisy_bas459.gif
NOTE: Daisy-chain timing shown for eight-channel ADS1298 and ADS1298R.
Figure 2. Daisy-Chain Interface Timing

7.8 Typical Characteristics

at TA = 25°C, AVDD = 3 V, AVSS = 0 V, DVDD = 1.8 V, internal VREFP = 2.4 V, VREFN = AVSS, external clock = 2.048 MHz, data rate = 500 SPS, high-resolution mode, and gain = 6 (unless otherwise noted)
ADS1294 ADS1294R ADS1296 ADS1296R ADS1298 ADS1298R tc_in_ref_noise_bas459.gif
Figure 3. Input-Referred Noise
ADS1294 ADS1294R ADS1296 ADS1296R ADS1298 ADS1298R tc_iref-tmp_bas459.gif
Figure 5. Internal Reference vs Temperature
ADS1294 ADS1294R ADS1296 ADS1296R ADS1298 ADS1298R tc_curr_nowct-vcm_bas459.gif
Figure 7. Leakage Current vs Input Voltage
ADS1294 ADS1294R ADS1296 ADS1296R ADS1298 ADS1298R tc_psrr-frq_bas459.gif
Figure 9. PSRR vs Frequency
ADS1294 ADS1294R ADS1296 ADS1296R ADS1298 ADS1298R tc_inl-pga_g_bas459.gif
Figure 11. INL vs PGA Gain
ADS1294 ADS1294R ADS1296 ADS1296R ADS1298 ADS1298R tc_ospec_dr110_bas459.gif
Figure 13. THD FFT Plot (60-Hz Signal)
ADS1294 ADS1294R ADS1296 ADS1296R ADS1298 ADS1298R tc_oset-pga_bas459.gif
Figure 15. Offset vs PGA Gain (Absolute Value)
ADS1294 ADS1294R ADS1296 ADS1296R ADS1298 ADS1298R tc_histo_thresh_loff_bas459.gif
Figure 17. Lead-Off Comparator Threshold Accuracy
ADS1294 ADS1294R ADS1296 ADS1296R ADS1298 ADS1298R tc_inl-range_bas459.gif
Figure 19. ADS129xR Nonlinearity
ADS1294 ADS1294R ADS1296 ADS1296R ADS1298 ADS1298R tc_thd-chan_bas459.gif
Figure 21. ADS129xR THD
ADS1294 ADS1294R ADS1296 ADS1296R ADS1298 ADS1298R C001_SBAS561.png
Figure 23. Internal VREF Drift vs Temperature
ADS1294 ADS1294R ADS1296 ADS1296R ADS1298 ADS1298R tc_histo_10s_noise_bas459.gif
Figure 4. Noise Histogram
ADS1294 ADS1294R ADS1296 ADS1296R ADS1298 ADS1298R tc_cmrr-frq_dr4_bas459.gif
Figure 6. CMRR vs Frequency
ADS1294 ADS1294R ADS1296 ADS1296R ADS1298 ADS1298R tc_curr_nowct-tmp_bas459.gif
Figure 8. Leakage Current vs Temperature
ADS1294 ADS1294R ADS1296 ADS1296R ADS1298 ADS1298R tc_thd-frq_bas459.gif
Figure 10. THD vs Frequency
ADS1294 ADS1294R ADS1296 ADS1296R ADS1298 ADS1298R tc_inl-tmp_bas459.gif
Figure 12. INL vs Temperature
ADS1294 ADS1294R ADS1296 ADS1296R ADS1298 ADS1298R tc_ospec_dr000_bas459.gif
Figure 14. FFT Plot (60-Hz Signal)
ADS1294 ADS1294R ADS1296 ADS1296R ADS1298 ADS1298R tc_histo_test_amp_bas459.gif
Figure 16. Test-Signal Amplitude Accuracy
ADS1294 ADS1294R ADS1296 ADS1296R ADS1298 ADS1298R tc_histo_loff_bas459.gif
Figure 18. Lead-Off Current-Source Accuracy Distribution
ADS1294 ADS1294R ADS1296 ADS1296R ADS1298 ADS1298R tc_chan_pwr_bas459.gif
Figure 20. ADS1298 and ADS1298R Channel Power
ADS1294 ADS1294R ADS1296 ADS1296R ADS1298 ADS1298R tc_snr-inamp_bas459.gif
Figure 22. SNR vs Input Amplitude
(10-Hz Sine Wave)