SCAS871H February   2009  – January 2016 CDCM61004

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Description (Continued)
  6. Pin Configuration and Functions
    1. 6.1 Pin Characteristics
  7. Specifications
    1. 7.1  Absolute Maximum Ratings
    2. 7.2  ESD Ratings
    3. 7.3  Recommended Operating Conditions
    4. 7.4  Thermal Information
    5. 7.5  Electrical Characteristics
    6. 7.6  Typical Output Phase Noise CharacteristicsCorrected units for tRJIT (RMS phase jitter); changed to fs, RMS from ps, RMS
    7. 7.7  Typical Output Jitter Characteristics
    8. 7.8  Crystal Characteristics
    9. 7.9  Dissipation Ratings
    10. 7.10 Typical Characteristics
  8. Parameter Measurement Information
  9. Detailed Description
    1. 9.1 Overview
    2. 9.2 Functional Block Diagram
    3. 9.3 Feature Description
      1. 9.3.1  Phase-Locked Loop (PLL)
      2. 9.3.2  Configuring the PLL
      3. 9.3.3  Crystal Input Interface
      4. 9.3.4  Phase Frequency Detector (PFD)
      5. 9.3.5  Charge Pump (CP)
      6. 9.3.6  On-Chip PLL Loop Filter
      7. 9.3.7  Prescaler Divider and Feedback Divider
      8. 9.3.8  On-Chip VCO
      9. 9.3.9  LVCMOS Input Interface
      10. 9.3.10 Output Divider
      11. 9.3.11 Output Buffer
    4. 9.4 Device Functional Modes
  10. 10Application and Implementation
    1. 10.1 Application Information
      1. 10.1.1 Start-Up Time Estimation
      2. 10.1.2 Output Termination
      3. 10.1.3 LVPECL Termination
      4. 10.1.4 LVDS Termination
      5. 10.1.5 LVCMOS Termination
      6. 10.1.6 Interfacing Between LVPECL and HCSL
    2. 10.2 Typical Application
      1. 10.2.1 Design Requirements
      2. 10.2.2 Detailed Design Procedure
        1. 10.2.2.1 Device Selection
          1. 10.2.2.1.1 Calculation Using LCM
        2. 10.2.2.2 Device Configuration
      3. 10.2.3 Application Curve
  11. 11Power Supply Recommendations
    1. 11.1 Power Considerations
    2. 11.2 Thermal Management
    3. 11.3 Power-Supply Filtering
  12. 12Layout
    1. 12.1 Layout Guidelines
    2. 12.2 Layout Example
  13. 13Device and Documentation Support
    1. 13.1 Device Support
      1. 13.1.1 Third-Party Products Disclaimer
    2. 13.2 Community Resources
    3. 13.3 Trademarks
    4. 13.4 Electrostatic Discharge Caution
    5. 13.5 Glossary
  14. 14Mechanical, Packaging, and Orderable Information

7 Specifications

7.1 Absolute Maximum Ratings

Over operating free-air temperature range (unless otherwise noted).(1)
PARAMETER MIN MAX UNIT
VCC Supply voltage(2) VCC_OUT, –0.5 4.6 V
VCC_PLL1
VCC_PLL2
VCC_VCO
VCC_IN
VIN Input voltage(3) –0.5 VCC_IN + 0.5 V
VOUT Output voltage range(3) –0.5 VCC_OUT + 0.5 V
IN Input current –20 20 mA
IOUT Output current –50 50 mA
Tstg Storage temperature –65 150 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) All supply voltages must be supplied simultaneously.
(3) Input and output negative voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

7.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±3000 V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2) ±1000
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Manufacturing with less than 500-V HBM is possible with the necessary precautions.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Manufacturing with less than 250-V CDM is possible with the necessary precautions.

7.3 Recommended Operating Conditions

Over operating free-air temperature range (unless otherwise noted).
MIN NOM MAX UNIT
VCC_OUT Output supply voltage 3 3.3 3.6 V
VCC_PLL1 PLL supply voltage 3 3.3 3.6 V
VCC_PLL2 PLL supply voltage 3 3.3 3.6 V
VCC_VCO On-chip VCO supply voltage 3 3.3 3.6 V
VCC_IN Input supply voltage 3 3.3 3.6 V
TA Ambient temperature –40 85 °C
|TCL| Allowable temperature drift for continuous PLL lock(1) 100 °C
(1) The maximum allowable temperature drift for continuous lock is how far the temperature can drift in either direction from the value it was at the time when the On-Chip VCO was calibrated with the condition that the PLL stays in lock throughout the temperature drift. The internal VCO calibration takes place at device start-up and when the device is reset using the RSTN pin. A more detailed description can be found in On-Chip VCO and Start-Up Time Estimation.This implies the part will work over the entire frequency range, but if the temperature drifts more than the maximum allowable temperature drift for continuous lock, then it is necessary to re-calibrate the VCO to ensure the PLL stays in lock. Regardless of what temperature the part was initially calibrated at, the temperature can never drift outside the ambient temperature range of –40 °C to 85 °C.

7.4 Thermal Information

THERMAL METRIC(1) CDCM61004 UNIT
RHB (VQFN)
32 PINS
RθJA Junction-to-ambient thermal resistance 33.1 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 25.7 °C/W
RθJB Junction-to-board thermal resistance 0.3 °C/W
ψJT Junction-to-top characterization parameter 7.1 °C/W
ψJB Junction-to-board characterization parameter 2 °C/W
RθJC(bot) Junction-to-case (bottom) thermal resistance 6.12 °C/W
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

7.5 Electrical Characteristics

At VCC = 3 V to 3.6 V and TA = –40°C to 85°C, unless otherwise noted.
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
CONTROL PIN LVCMOS INPUT CHARACTERISTICS
VIH Input high voltage 0.6 VCC V
VIL Input low voltage 0.4 VCC V
IIH Input high current VCC = 3.6 V, VIL = 0 V 200 μA
IIL Input low current VCC = 3 V, VIH = 3.6 V –200 μA
LVCMOS OUTPUT CHARACTERISTICS(1) (See Figure 7 and Figure 8)
fOSC_OUT Bypass output frequency 21.875 28.47 MHz
fOUT Output frequency 43.75 250 MHz
VOH Output high voltage VCC = min to max, IOH = –100 μA VCC –0.5 V
VOL Output low voltage VCC = min to max, IOL = 100 μA 0.3 V
tRJIT RMS phase jitter 250 MHz (10 kHz to 20 MHz) 0.85 ps, RMS
tSLEW-RATE Output rise/fall slew rate 20% to 80% 2.4 V/ns
ODC Output duty cycle 45% 55%
tSKEW Skew between outputs 60 ps
ICC, LVCMOS Device current, LVCMOS fIN = 25 MHz, fOUT = 250 MHz, CL = 5 pF 175 205 mA
LVPECL OUTPUT CHARACTERISTICS(2) (See Figure 9 and Figure 10)
fOUT Output frequency 43.75 683.264 MHz
VOH Output high voltage VCC –1.18 VCC –0.73 V
VOL Output low voltage VCC –2 VCC –1.55 V
|VOD| Differential output voltage 0.6 1.23 V
tRJIT RMS phase jitter 625 MHz (10 kHz to 20 MHz) 0.77 ps, RMS
tR/tF Output rise/fall time 20% to 80% 175 ps
ODC Output duty cycle 45% 55%
tSKEW Skew between outputs 30 ps
ICC, LVPECL Device current, LVPECL fIN = 25 MHz, fOUT = 625 MHz 180 215 mA
LVDS OUTPUT CHARACTERISTICS(3) (See Figure 11 and Figure 12)
fOUT Output frequency 43.75 683.264 MHz
|VOD| Differential output voltage 0.247 0.454 V
ΔVOD VDD magnitude change 50 mV
VOS Common-mode voltage 1.125 1.375 V
ΔVOS VOS magnitude change 50 mV
tRJIT RMS phase jitter 625 MHz (10 kHz to 20 MHz) 0.73 ps, RMS
tR/tF Output rise/fall time 20% to 80% 255 ps
ODC Output duty cycle 45% 55%
tSKEW Skew between outputs 40 ps
ICC, LVDS Device current, LVDS fIN = 25 MHz, fOUT = 625 MHz 150 195 mA
(1) Figure 7 and Figure 8 show DC and AC test setups, respectively. Jitter measurements made using 25-MHz quartz crystal inches.
(2) Figure 9 and Figure 10 show DC and AC test setups, respectively. Jitter measurements made using 25-MHz quartz crystal inches.
(3) Figure 11 and Figure 12 show DC and AC test setups, respectively. Jitter measurements made using 25-MHz quartz crystal inches.

7.6 Typical Output Phase Noise Characteristics

Over operating free-air temperature range (unless otherwise noted).
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
250-MHz LVCMOS OUTPUT(1) (See Figure 8)
phn100 Phase noise at 100-Hz offset –95 dBc/Hz
phn1k Phase noise at 1-kHz offset –110 dBc/Hz
phn10k Phase noise at 10-kHz offset –117 dBc/Hz
phn100k Phase noise at 100-kHz offset –120 dBc/Hz
phn1M Phase noise at 1-MHz offset –135 dBc/Hz
phn10M Phase noise at 10-MHz offset –148 dBc/Hz
phn20M Phase noise at 20-MHz offset –148 dBc/Hz
tRJIT RMS phase jitter from 10 kHz to 20 MHz 544 fs, RMS
tPJIT Total period jitter 27.4 ps, PP
tSTARTUP Start-up time, power supply ramp time of 1 ms,
final frequency accuracy of ±10 ppm
2.25 ms
625-MHz LVPECL OUTPUT(2) (See Figure 10)
phn100 Phase noise at 100-Hz offset –81 dBc/Hz
phn1k Phase noise at 1-kHz offset –101 dBc/Hz
phn10k Phase noise at 10-kHz offset –109 dBc/Hz
phn100k Phase noise at 100-kHz offset –112 dBc/Hz
phn1M Phase noise at 1-MHz offset –129 dBc/Hz
phn10M Phase noise at 10-MHz offset –146 dBc/Hz
phn20M Phase noise at 20-MHz offset –146 dBc/Hz
tRJIT RMS phase jitter from 10 kHz to 20 MHz 509 fs, RMS
tPJIT Total period jitter 26.9 ps, PP
tSTARTUP Start-up time, power supply ramp time of 1 ms,
final frequency accuracy of ±10 ppm
2.25 ms
625-MHz LVDS OUTPUT(3) (See Figure 12)
phn100 Phase noise at 100-Hz offset –88 dBc/Hz
phn1k Phase noise at 1-kHz offset –102 dBc/Hz
phn10k Phase noise at 10-kHz offset –109 dBc/Hz
phn100k Phase noise at 100-kHz offset –112 dBc/Hz
phn1M Phase noise at 1-MHz offset –129 dBc/Hz
phn10M Phase noise at 10-MHz offset –146 dBc/Hz
phn20M Phase noise at 20-MHz offset –146 dBc/Hz
tRJIT RMS phase jitter from 10 kHz to 20 MHz 510 fs, RMS
tPJIT Total period jitter 27 ps, PP
tSTARTUP Start-up time, power supply ramp time of 1 ms,
final frequency accuracy of ±10 ppm
2.25 ms
(1) Figure 8 shows test setup and uses 25-MHz quartz crystal in, VCC = 3.3 V, and TA = 25°C.
(2) Figure 10 shows test setup and uses 25-MHz quartz crystal in, VCC = 3.3 V, and TA = 25°C.
(3) Figure 12 shows test setup and uses 25-MHz quartz crystal in, VCC = 3.3 V, and TA = 25°C.

7.7 Typical Output Jitter Characteristics(1)

OUTPUT FREQUENCY
(MHz)
INPUT (MHz) LVCMOS OUTPUT LVPECL OUTPUT LVDS OUTPUT
tRJIT (fs, RMS) tPJIT (psPP) tRJIT (fs, RMS) tPJIT (psPP) tRJIT (fs, RMS) tPJIT (psPP)
62.5 25 592 32.9 611 20.7 667 28.4
75 25 518 27.5 533 19.4 572 25.7
77.76 24.8832 506 29.2 526 20.9 567 26.9
100 25 507 24.5 510 20.7 533 26.5
106.25 26.5625 535 23.5 524 20.2 553 26.5
125 25 557 39.6 556 21.4 570 27.1
150 25 518 38.4 493 18.9 515 26.2
155.52 24.8832 498 36.9 486 19.8 502 26.7
156.25 25 510 37.7 503 20.7 518 26.5
159.375 26.5625 535 37.4 510 19.9 534 26.3
187.5 25 506 32.8 506 20.3 509 25.5
200 25 491 23.3 492 30 499 34.9
212.5 26.5625 520 47.8 509 30.8 530 37.3
250 25 544 27.4 541 21.4 550 27.5
311.04 24.8832 481 20.5 496 24.7
312.5 25 501 20.8 508 25.8
622.08 24.8832 492 27.2 500 27.2
625 25 515 26.9 509 27
(1) Figure 8, Figure 10, and Figure 12 show LVCMOS, LVPECL, and LVDS test setups (respectively) using appropriate quartz crystal in, VCC = 3.3 V, and TA = 25°C.

7.8 Crystal Characteristics

PARAMETER MIN TYP MAX UNIT
Mode of oscillation Fundamental MHz
Frequency 21.875 28.47 MHz
Equivalent series resistance (ESR) 50 Ω
On-chip load capacitance 8 10 pF
Drive level 0.1 1 mW
Maximum shunt capacitance 7 pF

7.9 Dissipation Ratings(1)(2)

PARAMETER TEST
CONDITIONS
VALUE UNIT
4 × 4 VIAS
ON PAD
θJA Thermal resistance, junction-to-ambient 0 LFM 35 °C/W
θJP(3) Thermal resistance, junction-to-pad 4 °C/W
(1) The package thermal resistance is calculated in accordance with JESD 51 and JEDEC 2S2P (high-K board).
(2) Connected to GND with nine thermal vias (0.3-mm diameter).
(3) θJP (junction-to-pad) is used for the VQFN package, because the primary heat flow is from the junction to the GND pad of the VQFN package.

7.10 Typical Characteristics

Over operating free-air temperature range (unless otherwise noted).
CDCM61004 tc_curr_lvpecl_out_fqcy_out_cas871.gif Figure 1. Typical Current Consumption for LVPECL Output vs Output Frequency
CDCM61004 tc_curr_lvcmos_out_load_fqcy_out1_cas871.gif Figure 3. Typical Current Consumption for LVCMOS Output With 5-pF Load vs Output Frequency
CDCM61004 tc_curr_lvds_out_vdiff_out_fqcy_out_cas871.gif Figure 5. Typical LVDS Differential Output Voltage vs Output Frequency
CDCM61004 tc_curr_lvds_out_fqcy_out_cas871.gif Figure 2. Typical Current Consumption for LVDS Output vs Output Frequency
CDCM61004 tc_curr_lvpecl_out_vdiff_out_fqcy_out_cas871.gif Figure 4. Typical LVPECL Differential Output Voltage vs Output Frequency
CDCM61004 tc_curr_lvcmos_out_load_fqcy_out2_cas871.gif Figure 6. Typical LVCMOS Output Voltage With 5-pF Load vs Output Frequency