SLAA450G April   2010  – April 2020

 

  1.   Creating a Custom Flash-Based Bootloader (BSL)
    1.     Trademarks
    2. 1 5xx and 6xx Bootloader Customization
      1. 1.1 BSL Memory Layout
        1. 1.1.1 Z-Area
        2. 1.1.2 BSL Reserved Memory Locations
      2. 1.2 Device Start-up Sequence
        1. 1.2.1 BSL Protect Function
          1. 1.2.1.1 Protection of BSL Memory
          2. 1.2.1.2 Checking for BSL Invoke
      3. 1.3 TI-Supplied BSL Software
        1. 1.3.1 Software Overview
        2. 1.3.2 Software File Details
          1. 1.3.2.1 BSL430_Low_Level_Init.s43 (IAR) / BSL430_Low_Level_Init.asm (CCS)
          2. 1.3.2.2 BSL_Device_File.h
          3. 1.3.2.3 lnk430FXXXX_BSL_AREA.xcl (IAR) / MSP430Fxxxx_BSL.cmd (CCS)
        3. 1.3.3 Known Limitations in CCS CSL Code Example
          1. 1.3.3.1 Memory Allocation of BSL Code Under Linker Command File
          2. 1.3.3.2 BSL Functions Supported in the Default Setting Project
          3. 1.3.3.3 How to Accomodate Full Function of BSL
          4. 1.3.3.4 Using Modified boot_hook.h and boot.c (CCS Only)
      4. 1.4 Creation of Custom Peripheral Interface
        1. 1.4.1 PI_init ()
        2. 1.4.2 PI_receivePacket()
        3. 1.4.3 PI_sendData(int bufSize)
      5. 1.5 BSL Development and Debug
        1. 1.5.1 Development and Testing
        2. 1.5.2 Special Notes and Tips
        3. 1.5.3 USB BSL External Oscillator Frequency
    3. 2 G2xx Bootloader Creation and Customization
      1. 2.1 Target System Specification
      2. 2.2 BSL Specification
        1. 2.2.1 Functionality
          1. 2.2.1.1 Entry Sequence
          2. 2.2.1.2 Synchronization
          3. 2.2.1.3 Erasing Previous Flash Content
          4. 2.2.1.4 Receiving and Writing New User Data
          5. 2.2.1.5 Data Verification
        2. 2.2.2 Memory Footprint
        3. 2.2.3 Peripherals
      3. 2.3 Implementation
        1. 2.3.1 BSL Assembler Code
          1. 2.3.1.1 Save DCO Calibration Data
          2. 2.3.1.2 Linker Command File
            1. 2.3.1.2.1 Locating the Linker Command File
            2. 2.3.1.2.2 Modify Linker File
            3. 2.3.1.2.3 Force the IDE to Use Custom Linker File
          3. 2.3.1.3 Project Settings
        2. 2.3.2 User Application
      4. 2.4 BSL Operation
        1. 2.4.1 Hardware Setup
        2. 2.4.2 Connection to Host
          1. 2.4.2.1 Determining COM Port
          2. 2.4.2.2 Setup of COM Port
        3. 2.4.3 Operate BSL - Standard Sequence
        4. 2.4.4 Create New Code to Download Through BSL
          1. 2.4.4.1 Create Custom Application
          2. 2.4.4.2 Save Calibration Data
          3. 2.4.4.3 Make User Application Code a BSL Update File
            1. 2.4.4.3.1 Using CCS
            2. 2.4.4.3.2 Using IAR
          4. 2.4.4.4 Obtaining XOR Checksum
            1. 2.4.4.4.1 Send User Data
            2. 2.4.4.4.2 Read Checksum
            3. 2.4.4.4.3 Send Acquired Checksum
            4. 2.4.4.4.4 Verify Data
            5. 2.4.4.4.5 Save Checksum
        5. 2.4.5 Getting Ready for Production
    4. 3 Frequently Asked Questions (FAQ)
  2.   Revision History

PI_receivePacket()

This is the primary loop function of the BSL. This function receives all bytes for a Core Command and returns a value to the Core Command based on the results. The return value definitions are:

DATA_RECEIVED

The data was successfully received. No checks were performed to verify whether or not the command itself is valid; however, the bytes were correctly received as sent by the host and can be safely processed.

RX_ERROR_RECOVERABLE

Some error occurred during receiving of a packet. The packet is lost, but the receive function can be called again.

RX_ERROR_REINIT

Reserved for when an error occurs during receiving of a packet that would require the PI_init() function be called again before receiving further packets.

RX_ERROR_FATAL

Reserved for when an error occurs during receiving of a packet that renders further communication impossible. A complete system restart is required.

PI_DATA_RECEIVED

Indicates that a packet was received and processed by the Peripheral Interface. No action is required other than calling the PI_receivePacket() function again.