SLAA534A June   2013  – June 2020

 

  1. Introduction
    1. 1.1  ABIs for the MSP430
    2. 1.2  Scope
    3. 1.3  ABI Variants
    4. 1.4  Toolchains and Interoperability
    5. 1.5  Libraries
    6. 1.6  Types of Object Files
    7. 1.7  Segments
    8. 1.8  MSP430 Architecture Overview
    9. 1.9  MSP430 Memory Models
    10. 1.10 Reference Documents
    11. 1.11 Code Fragment Notation
  2. Data Representation
    1. 2.1 Basic Types
    2. 2.2 Data in Registers
    3. 2.3 Data in Memory
    4. 2.4 Pointer Types
    5. 2.5 Complex Types
    6. 2.6 Structures and Unions
    7. 2.7 Arrays
    8. 2.8 Bit Fields
      1. 2.8.1 Volatile Bit Fields
    9. 2.9 Enumeration Types
  3. Calling Conventions
    1. 3.1 Call and Return
      1. 3.1.1 Call Instructions
        1. 3.1.1.1 Indirect Calls
        2. 3.1.1.2 Direct Calls
      2. 3.1.2 Return Instruction
      3. 3.1.3 Pipeline Conventions
      4. 3.1.4 Weak Functions
    2. 3.2 Register Conventions
      1. 3.2.1 Argument Registers
      2. 3.2.2 Callee-Saved Registers
    3. 3.3 Argument Passing
      1. 3.3.1 Register Singles
      2. 3.3.2 Register Pairs
      3. 3.3.3 Split Pairs
      4. 3.3.4 Quads (Four-Register Arguments)
      5. 3.3.5 Special Convention for Compiler Helper Functions
      6. 3.3.6 C++ Argument Passing
      7. 3.3.7 Passing Structs and Unions
      8. 3.3.8 Stack Layout of Arguments Not Passed in Registers
      9. 3.3.9 Frame Pointer
    4. 3.4 Return Values
    5. 3.5 Structures and Unions Passed and Returned by Reference
    6. 3.6 Conventions for Compiler Helper Functions
    7. 3.7 Scratch Registers for Functions Already Seen
    8. 3.8 _ _mspabi_func_epilog Helper Functions
    9. 3.9 Interrupt Functions
  4. Data Allocation and Addressing
    1. 4.1 Data Sections and Segments
    2. 4.2 Addressing Modes
    3. 4.3 Allocation and Addressing of Static Data
      1. 4.3.1 Addressing Methods for Static Data
        1. 4.3.1.1 Absolute Addressing
        2. 4.3.1.2 Symbolic Addressing
        3. 4.3.1.3 Immediate Addressing
      2. 4.3.2 Placement Conventions for Static Data
        1. 4.3.2.1 Abstract Conventions for Placement
        2. 4.3.2.2 Abstract Conventions for Addressing
      3. 4.3.3 Initialization of Static Data
    4. 4.4 Automatic Variables
    5. 4.5 Frame Layout
      1. 4.5.1 Stack Alignment
      2. 4.5.2 Register Save Order
    6. 4.6 Heap-Allocated Objects
  5. Code Allocation and Addressing
    1. 5.1 Computing the Address of a Code Label
      1. 5.1.1 Absolute Addressing for Code
      2. 5.1.2 Symbolic Addressing
      3. 5.1.3 Immediate Addressing
    2. 5.2 Branching
    3. 5.3 Calls
      1. 5.3.1 Direct Call
      2. 5.3.2 Far Call Trampoline
      3. 5.3.3 Indirect Calls
  6. Helper Function API
    1. 6.1 Floating-Point Behavior
    2. 6.2 C Helper Function API
    3. 6.3 Special Register Conventions for Helper Functions
    4. 6.4 Floating-Point Helper Functions for C99
  7. Standard C Library API
    1. 7.1  Reserved Symbols
    2. 7.2  <assert.h> Implementation
    3. 7.3  <complex.h> Implementation
    4. 7.4  <ctype.h> Implementation
    5. 7.5  <errno.h> Implementation
    6. 7.6  <float.h> Implementation
    7. 7.7  <inttypes.h> Implementation
    8. 7.8  <iso646.h> Implementation
    9. 7.9  <limits.h> Implementation
    10. 7.10 <locale.h> Implementation
    11. 7.11 <math.h> Implementation
    12. 7.12 <setjmp.h> Implementation
    13. 7.13 <signal.h> Implementation
    14. 7.14 <stdarg.h> Implementation
    15. 7.15 <stdbool.h> Implementation
    16. 7.16 <stddef.h> Implementation
    17. 7.17 <stdint.h> Implementation
    18. 7.18 <stdio.h> Implementation
    19. 7.19 <stdlib.h> Implementation
    20. 7.20 <string.h> Implementation
    21. 7.21 <tgmath.h> Implementation
    22. 7.22 <time.h> Implementation
    23. 7.23 <wchar.h> Implementation
    24. 7.24 <wctype.h> Implementation
  8. C++ ABI
    1. 8.1  Limits (GC++ABI 1.2)
    2. 8.2  Export Template (GC++ABI 1.4.2)
    3. 8.3  Data Layout (GC++ABI Chapter 2)
    4. 8.4  Initialization Guard Variables (GC++ABI 2.8)
    5. 8.5  Constructor Return Value (GC++ABI 3.1.5)
    6. 8.6  One-Time Construction API (GC++ABI 3.3.2)
    7. 8.7  Controlling Object Construction Order (GC++ ABI 3.3.4)
    8. 8.8  Demangler API (GC++ABI 3.4)
    9. 8.9  Static Data (GC++ ABI 5.2.2)
    10. 8.10 Virtual Tables and the Key function (GC++ABI 5.2.3)
    11. 8.11 Unwind Table Location (GC++ABI 5.3)
  9. Exception Handling
    1. 9.1  Overview
    2. 9.2  PREL31 Encoding
    3. 9.3  The Exception Index Table (EXIDX)
      1. 9.3.1 Pointer to Out-of-Line EXTAB Entry
      2. 9.3.2 EXIDX_CANTUNWIND
      3. 9.3.3 Inlined EXTAB Entry
    4. 9.4  The Exception Handling Instruction Table (EXTAB)
      1. 9.4.1 EXTAB Generic Model
      2. 9.4.2 EXTAB Compact Model
      3. 9.4.3 Personality Routines
    5. 9.5  Unwinding Instructions
      1. 9.5.1 Common Sequence
      2. 9.5.2 Byte-Encoded Unwinding Instructions
    6. 9.6  Descriptors
      1. 9.6.1 Encoding of Type Identifiers
      2. 9.6.2 Scope
      3. 9.6.3 Cleanup Descriptor
      4. 9.6.4 Catch Descriptor
      5. 9.6.5 Function Exception Specification (FESPEC) Descriptor
    7. 9.7  Special Sections
    8. 9.8  Interaction With Non-C++ Code
      1. 9.8.1 Automatic EXIDX Entry Generation
      2. 9.8.2 Hand-Coded Assembly Functions
    9. 9.9  Interaction With System Features
      1. 9.9.1 Shared Libraries
      2. 9.9.2 Overlays
      3. 9.9.3 Interrupts
    10. 9.10 Assembly Language Operators in the TI Toolchain
  10. 10DWARF
    1. 10.1 DWARF Register Names
    2. 10.2 Call Frame Information
    3. 10.3 Vendor Names
    4. 10.4 Vendor Extensions
  11. 11ELF Object Files (Processor Supplement)
    1. 11.1 Registered Vendor Names
    2. 11.2 ELF Header
    3. 11.3 Sections
      1. 11.3.1 Section Indexes
      2. 11.3.2 Section Types
      3. 11.3.3 Extended Section Header Attributes
      4. 11.3.4 Subsections
      5. 11.3.5 Special Sections
      6. 11.3.6 Section Alignment
    4. 11.4 Symbol Table
      1. 11.4.1 Symbol Types
      2. 11.4.2 Common Block Symbols
      3. 11.4.3 Symbol Names
      4. 11.4.4 Reserved Symbol Names
      5. 11.4.5 Mapping Symbols
    5. 11.5 Relocation
      1. 11.5.1 Relocation Types
        1. 11.5.1.1 Absolute Relocations
        2. 11.5.1.2 PC-Relative Relocations
        3. 11.5.1.3 Relocations in Data Sections
        4. 11.5.1.4 Relocations for MSP430 Instructions
        5. 11.5.1.5 Relocations for MSP430X Instructions
        6. 11.5.1.6 Other Relocation Types
      2. 11.5.2 Relocation Operations
      3. 11.5.3 Relocation of Unresolved Weak References
  12. 12ELF Program Loading and Linking (Processor Supplement)
    1. 12.1 Program Header
      1. 12.1.1 Base Address
      2. 12.1.2 Segment Contents
      3. 12.1.3 Thread-Local Storage
    2. 12.2 Program Loading
  13. 13Build Attributes
    1. 13.1 MSP430 ABI Build Attribute Subsection
    2. 13.2 MSP430 Build Attribute Tags
  14. 14Copy Tables and Variable Initialization
    1. 14.1 Copy Table Format
    2. 14.2 Compressed Data Formats
      1. 14.2.1 RLE
      2. 14.2.2 LZSS Format
    3. 14.3 Variable Initialization
  15. 15Revision History

Relocation

The ELF relocations for MSP430 are defined such that the all information needed to perform the relocation is contained in the relocation entry, the object field, and the associated symbol. The linker does not need to decode instructions, beyond unpacking the object field, to perform the relocation. This results in slightly more relocation types than the older MSP430 COFF ABI. Relocation types are not compatible between COFF and ELF.

Relocations are specified as operating on a relocatable field. Roughly speaking, the relocatable field is the bits of the program image that are affected by the relocation. The field is defined in terms of an addressable container whose address is given by the r_offset field of the relocation entry. The field's size and position within to the container, as well as the computation of the relocated value, are specified by the relocation type. The relocation operation consists of extracting the relocatable field, performing the operation, and re-inserting the resultant value back into the field.

ELF relocations can be of type Elf32_Rela or Elf32_Rel. The Rela entries contain an explicit addend which is used in the relocation calculation. Entries of type Rel use the relocatable field itself as the addend. Certain relocations are identified as Rela only. For the most part these correspond to the upper 16 bits of a 32-bit address, where the resultant value depends on carry propagation from lower bits that are not available in the field. Where Rela is specified, an implementation must honor this requirement. An implementation may choose to use Rel or Rela type relocations for other relocations.

The effects of addressing modes on relocations is briefly described in Section 4.3.