SLAU144K December 2004 – August 2022 MSP430AFE221 , MSP430AFE222 , MSP430AFE223 , MSP430AFE231 , MSP430AFE232 , MSP430AFE233 , MSP430AFE251 , MSP430AFE252 , MSP430AFE253 , MSP430F2001 , MSP430F2002 , MSP430F2003 , MSP430F2011 , MSP430F2012 , MSP430F2013 , MSP430F2101 , MSP430F2111 , MSP430F2112 , MSP430F2121 , MSP430F2122 , MSP430F2131 , MSP430F2132 , MSP430F2132-EP , MSP430F2232 , MSP430F2234 , MSP430F2252 , MSP430F2252-Q1 , MSP430F2254 , MSP430F2272 , MSP430F2272-Q1 , MSP430F2274 , MSP430F2274-EP , MSP430F233 , MSP430F2330 , MSP430F235 , MSP430F2350 , MSP430F2370 , MSP430F2410 , MSP430F2416 , MSP430F2417 , MSP430F2418 , MSP430F2419 , MSP430F247 , MSP430F2471 , MSP430F248 , MSP430F2481 , MSP430F249 , MSP430F2491 , MSP430F2616 , MSP430F2617 , MSP430F2618 , MSP430F2619 , MSP430G2001 , MSP430G2101 , MSP430G2102 , MSP430G2111 , MSP430G2112 , MSP430G2121 , MSP430G2131 , MSP430G2132 , MSP430G2152 , MSP430G2153 , MSP430G2201 , MSP430G2201-Q1 , MSP430G2202 , MSP430G2203 , MSP430G2210 , MSP430G2211 , MSP430G2212 , MSP430G2213 , MSP430G2221 , MSP430G2230 , MSP430G2231 , MSP430G2231-Q1 , MSP430G2232 , MSP430G2233 , MSP430G2252 , MSP430G2253 , MSP430G2302 , MSP430G2303 , MSP430G2312 , MSP430G2313 , MSP430G2332 , MSP430G2333 , MSP430G2352 , MSP430G2353 , MSP430G2402 , MSP430G2403 , MSP430G2412 , MSP430G2413 , MSP430G2432 , MSP430G2433 , MSP430G2444 , MSP430G2452 , MSP430G2453 , MSP430G2513 , MSP430G2533 , MSP430G2544 , MSP430G2553 , MSP430G2744 , MSP430G2755 , MSP430G2855 , MSP430G2955 , MSP430TCH5E
MSP430 devices have up to eight digital I/O ports implemented, P1 to P8. Each port has up to eight I/O pins. Every I/O pin is individually configurable for input or output direction, and every I/O pin can be individually read or written.
Ports P1 and P2 have interrupt capability. Each interrupt for the P1 and P2 I/O lines can be individually enabled and configured to provide an interrupt on a rising edge or falling edge of an input signal. All P1 I/O lines source a single interrupt vector, and all P2 I/O lines source a different single interrupt vector.
The digital I/O features include:
MSP430G22x0 : These devices feature digital I/O pins P1.2, P1.5, P1.6, and P1.7. The GPIOs P1.0, P1.1, P1.3, P1.4, P2.6, and P2.7 are implemented on this device but not available on the device pinout. To avoid floating inputs on these GPIOs, these digital I/Os should be properly initialized by running a start-up code similar to the following sample:
mov.b #0x1B, P1REN; ; Terminate unavailable Port1 pins properly
; Config as Input with pulldown enabled
xor.b #0x20, BCSCTL3; ; Select VLO as low freq clock
The initialization code configures GPIOs P1.0, P1.1, P1.3, and P1.4 as inputs with pulldown resistor enabled (that is, P1REN.x = 1) and GPIOs P2.6 and P2.7 are terminated by selecting VLOCLK as ACLK – see the Basic Clock System chapter for details. The register bits of P1.0, P1.1, P1.3, and P1.4 in registers P1OUT, P1DIR, P1IFG, P1IE, P1IES, P1SEL, and P1REN should not be altered after the initialization code is executed. Also, all Port 2 registers are should not be altered.