SLAU144K December 2004 – August 2022 MSP430AFE221 , MSP430AFE222 , MSP430AFE223 , MSP430AFE231 , MSP430AFE232 , MSP430AFE233 , MSP430AFE251 , MSP430AFE252 , MSP430AFE253 , MSP430F2001 , MSP430F2002 , MSP430F2003 , MSP430F2011 , MSP430F2012 , MSP430F2013 , MSP430F2101 , MSP430F2111 , MSP430F2112 , MSP430F2121 , MSP430F2122 , MSP430F2131 , MSP430F2132 , MSP430F2132-EP , MSP430F2232 , MSP430F2234 , MSP430F2252 , MSP430F2252-Q1 , MSP430F2254 , MSP430F2272 , MSP430F2272-Q1 , MSP430F2274 , MSP430F2274-EP , MSP430F233 , MSP430F2330 , MSP430F235 , MSP430F2350 , MSP430F2370 , MSP430F2410 , MSP430F2416 , MSP430F2417 , MSP430F2418 , MSP430F2419 , MSP430F247 , MSP430F2471 , MSP430F248 , MSP430F2481 , MSP430F249 , MSP430F2491 , MSP430F2616 , MSP430F2617 , MSP430F2618 , MSP430F2619 , MSP430G2001 , MSP430G2101 , MSP430G2102 , MSP430G2111 , MSP430G2112 , MSP430G2121 , MSP430G2131 , MSP430G2132 , MSP430G2152 , MSP430G2153 , MSP430G2201 , MSP430G2201-Q1 , MSP430G2202 , MSP430G2203 , MSP430G2210 , MSP430G2211 , MSP430G2212 , MSP430G2213 , MSP430G2221 , MSP430G2230 , MSP430G2231 , MSP430G2231-Q1 , MSP430G2232 , MSP430G2233 , MSP430G2252 , MSP430G2253 , MSP430G2302 , MSP430G2303 , MSP430G2312 , MSP430G2313 , MSP430G2332 , MSP430G2333 , MSP430G2352 , MSP430G2353 , MSP430G2402 , MSP430G2403 , MSP430G2412 , MSP430G2413 , MSP430G2432 , MSP430G2433 , MSP430G2444 , MSP430G2452 , MSP430G2453 , MSP430G2513 , MSP430G2533 , MSP430G2544 , MSP430G2553 , MSP430G2744 , MSP430G2755 , MSP430G2855 , MSP430G2955 , MSP430TCH5E
* CLRZ | Clear zero bit | |
Syntax |
CLRZ | |
Operation | 0 → Z or (.NOT.src .AND. dst → dst) | |
Emulation |
BIC #2,SR | |
Description | The constant 02h is inverted (0FFFDh) and logically ANDed with the destination operand. The result is placed into the destination. The clear zero bit instruction is a word instruction. | |
Status Bits | N: | Not affected |
Z: | Reset to 0 | |
C: | Not affected | |
V: | Not affected | |
Mode Bits | OSCOFF, CPUOFF, and GIE are not affected. | |
Example | The zero bit in the SR is cleared. |
CLRZ
Indirect, Auto-Increment mode: Call a subroutine at the 16-bit address contained in the word pointed to by register R5 (20-bit address) and increment the 16-bit address in R5 afterwards by 2. The next time the software uses R5 as a pointer, it can alter the program execution due to access to the next word address in the table pointed to by R5. |
CALL @R5+ ; Start address at @R5. R5 + 2
Indexed mode: Call a subroutine at the 16-bit address contained in the 20-bit address pointed to by register (R5 + X), for example, a table with addresses starting at X. The address is within the lower 64KB. X is within +32KB. |
CALL X(R5) ; Start address at @(R5+X). z16(R5)