SLAU144K December 2004 – August 2022 MSP430AFE221 , MSP430AFE222 , MSP430AFE223 , MSP430AFE231 , MSP430AFE232 , MSP430AFE233 , MSP430AFE251 , MSP430AFE252 , MSP430AFE253 , MSP430F2001 , MSP430F2002 , MSP430F2003 , MSP430F2011 , MSP430F2012 , MSP430F2013 , MSP430F2101 , MSP430F2111 , MSP430F2112 , MSP430F2121 , MSP430F2122 , MSP430F2131 , MSP430F2132 , MSP430F2132-EP , MSP430F2232 , MSP430F2234 , MSP430F2252 , MSP430F2252-Q1 , MSP430F2254 , MSP430F2272 , MSP430F2272-Q1 , MSP430F2274 , MSP430F2274-EP , MSP430F233 , MSP430F2330 , MSP430F235 , MSP430F2350 , MSP430F2370 , MSP430F2410 , MSP430F2416 , MSP430F2417 , MSP430F2418 , MSP430F2419 , MSP430F247 , MSP430F2471 , MSP430F248 , MSP430F2481 , MSP430F249 , MSP430F2491 , MSP430F2616 , MSP430F2617 , MSP430F2618 , MSP430F2619 , MSP430G2001 , MSP430G2101 , MSP430G2102 , MSP430G2111 , MSP430G2112 , MSP430G2121 , MSP430G2131 , MSP430G2132 , MSP430G2152 , MSP430G2153 , MSP430G2201 , MSP430G2201-Q1 , MSP430G2202 , MSP430G2203 , MSP430G2210 , MSP430G2211 , MSP430G2212 , MSP430G2213 , MSP430G2221 , MSP430G2230 , MSP430G2231 , MSP430G2231-Q1 , MSP430G2232 , MSP430G2233 , MSP430G2252 , MSP430G2253 , MSP430G2302 , MSP430G2303 , MSP430G2312 , MSP430G2313 , MSP430G2332 , MSP430G2333 , MSP430G2352 , MSP430G2353 , MSP430G2402 , MSP430G2403 , MSP430G2412 , MSP430G2413 , MSP430G2432 , MSP430G2433 , MSP430G2444 , MSP430G2452 , MSP430G2453 , MSP430G2513 , MSP430G2533 , MSP430G2544 , MSP430G2553 , MSP430G2744 , MSP430G2755 , MSP430G2855 , MSP430G2955 , MSP430TCH5E
The LFXT1 oscillator is not implemented in the MSP430G22x0 device family.
The LFXT1 oscillator supports ultra-low current consumption using a 32768-Hz watch crystal in LF mode (XTS = 0). A watch crystal connects to XIN and XOUT without any other external components. The software-selectable XCAPx bits configure the internally provided load capacitance for the LFXT1 crystal in LF mode. This capacitance can be selected as 1 pF, 6 pF, 10 pF, or 12.5 pF typical. Additional external capacitors can be added if necessary.
The LFXT1 oscillator also supports high-speed crystals or resonators when in HF mode (XTS = 1, XCAPx = 00). The high-speed crystal or resonator connects to XIN and XOUT and requires external capacitors on both terminals. These capacitors should be sized according to the crystal or resonator specifications. When LFXT1 is in HF mode, the LFXT1Sx bits select the range of operation.
LFXT1 may be used with an external clock signal on the XIN pin in either LF or HF mode when LFXT1Sx = 11, OSCOFF = 0, and XCAPx = 00. When used with an external signal, the external frequency must meet the data sheet parameters for the chosen mode. When the input frequency is below the specified lower limit, the LFXT1OF bit may be set preventing the CPU from being clocked with LFXT1CLK.
Software can disable LFXT1 by setting OSCOFF, if LFXT1CLK does not source SMCLK or MCLK, as shown in Figure 5-3. LFXT1 is switched on if requested as source for ACLK (ACLK_request), MCLK (MCLK_request), or SMCLK (SMCLK_request) and not disabled by software.
LFXT1 Oscillator Characteristics
Low-frequency crystals often require hundreds of milliseconds to start up, depending on the crystal.
Ultra-low-power oscillators such as the LFXT1 in LF mode should be guarded from noise coupling from other sources. The crystal should be placed as close as possible to the MSP430 with the crystal housing grounded and the crystal traces guarded with ground traces.