SLAU533D September   2013  – April 2017

 

  1.   MSP430F5529 LaunchPad™ Development Kit (MSP‑EXP430F5529LP)
    1.     Trademarks
    2. 1 Getting Started
      1. 1.1 Key Features
      2. 1.2 Kit Contents
      3. 1.3 Out-of-Box Experience
        1. 1.3.1 Step 1: Install a Software Development Platform
        2. 1.3.2 Step 2: Connect the Hardware
        3. 1.3.3 Step 3: Verify the storage volume has been loaded
        4. 1.3.4 Step 4: Open a text editor, and press the buttons
        5. 1.3.5 Step 5: Customize the strings
    3. 2 Hardware
      1. 2.1 Block Diagram
      2. 2.2 Hardware Features
        1. 2.2.1 MSP430F5529
        2. 2.2.2 eZ-FET lite Onboard Emulator
        3. 2.2.3 Integrated Full-Speed USB Hub
        4. 2.2.4 Power
        5. 2.2.5 Clocking
        6. 2.2.6 Application (or "Backchannel") UART
        7. 2.2.7 Emulator and Target Isolation Jumper Block
        8. 2.2.8 Isolation Jumper Block: 3.3-V and 5-V Jumpers
        9. 2.2.9 Isolation Jumper Block: Emulator Connection and Application UART
      3. 2.3 Measure Current Draw of MSP430 MCU
      4. 2.4 Using an External Power Source
        1. 2.4.1 External 3.3-V Power Source
        2. 2.4.2 External 5-V Power Source Without USB Connection
        3. 2.4.3 External 5-V Power Source With USB Connection
      5. 2.5 Using the eZ-FET lite Emulator With a Different Target
      6. 2.6 USB BSL Button
      7. 2.7 BoosterPack Plug-in Module Pinout
      8. 2.8 Design Files
      9. 2.9 Hardware Change Log
    4. 3 Software Examples
      1. 3.1 MSP430 Software Libraries: driverlib and the USB API
      2. 3.2 Viewing the Code
        1. 3.2.1 CCS
        2. 3.2.2 IAR
      3. 3.3 Example Project Software Organization
      4. 3.4 USB Configuration Files
      5. 3.5 Out-of-Box Experience: emulStorageKeyboard
        1. 3.5.1  Flowchart
        2. 3.5.2  Pre-Initialization
        3. 3.5.3  Initialization
          1. 3.5.3.1 Configuring the Keyboard
          2. 3.5.3.2 Configuring the MSC Interface
        4. 3.5.4  Handling SCSI Commands
        5. 3.5.5  LPM0 Entry
        6. 3.5.6  LPM0 Exit
        7. 3.5.7  Emulated Storage Volume
        8. 3.5.8  Sending Data as a USB Keyboard
        9. 3.5.9  Properly Handling USB Unplug Events
        10. 3.5.10 Non-Maskable Interrupt (NMI) Vector
      6. 3.6 Example: simpleUsbBackchannel
        1. 3.6.1 What It Does
        2. 3.6.2 Installing the CDC Interface
        3. 3.6.3 Operating the Example
        4. 3.6.4 Backchannel UART Library: bcUart.c, bcUart.h
        5. 3.6.5 Code Description: Initialization
          1. 3.6.5.1 Stopping the Watchdog
          2. 3.6.5.2 Configuring VCORE
          3. 3.6.5.3 Configuring Clocks
          4. 3.6.5.4 Configuring Ports
          5. 3.6.5.5 Initializing the Backchannel UART
          6. 3.6.5.6 Configuring USB
        6. 3.6.6 Code Description: Main Loop
        7. 3.6.7 Modifying to Use an HID-Datapipe Interface
      7. 3.7 Starting Device Manager
    5. 4 Additional Resources
      1. 4.1 LaunchPad Development Kit Websites
      2. 4.2 Information on the MSP430F5529
      3. 4.3 Download CCS, IAR, mspgcc, or Energia
      4. 4.4 USB Developers Package
      5. 4.5 MSP430Ware and TI Resource Explorer
      6. 4.6 F5529 Code Examples
      7. 4.7 MSP430 Application Notes
      8. 4.8 TI E2E Community
      9. 4.9 Community at Large
    6. 5 FAQs
    7. 6 Schematics
  2.   Revision History

Configuring VCORE

Next, main() sets the PMMCOREV register field to 2. PMMCOREV controls the VCORE voltage, which is the voltage at which the MCU core circuitry operates. VCORE is generated from a low-dropout (LDO) regulator inside the MCU Power Management Module (PMM). Higher CPU operating speeds require higher VCORE levels, and higher VCORE levels result in higher quiescent current on the LDO. For this reason, VCORE is programmable.

Although primarily related to CPU speed, the device data sheet also shows that during operation of the USB PLL (that is, during an active USB connection), VCORE must be set to 2 or 3, the highest two levels. Because the demo's use of an 8-MHz clock does not require a setting of 3, the PMMCOREV register is set to 2.