SLAZ093AB October   2012  – May 2021 CC430F5135

 

  1. 1Functional Advisories
  2. 2Preprogrammed Software Advisories
  3. 3Debug Only Advisories
  4. 4Fixed by Compiler Advisories
  5. 5Nomenclature, Package Symbolization, and Revision Identification
    1. 5.1 Device Nomenclature
    2. 5.2 Package Markings
      1.      RGZ48
    3. 5.3 Memory-Mapped Hardware Revision (TLV Structure)
  6. 6Advisory Descriptions
    1. 6.1  ADC24
    2. 6.2  ADC25
    3. 6.3  ADC27
    4. 6.4  ADC29
    5. 6.5  ADC42
    6. 6.6  ADC69
    7. 6.7  AES1
    8. 6.8  BSL7
    9. 6.9  COMP4
    10. 6.10 COMP10
    11. 6.11 CPU18
    12. 6.12 CPU20
    13. 6.13 CPU21
    14. 6.14 CPU22
    15. 6.15 CPU23
    16. 6.16 CPU24
    17. 6.17 CPU25
    18. 6.18 CPU26
    19. 6.19 CPU27
    20. 6.20 CPU28
    21. 6.21 CPU29
    22. 6.22 CPU30
    23. 6.23 CPU31
    24. 6.24 CPU32
    25. 6.25 CPU33
    26. 6.26 CPU34
    27. 6.27 CPU35
    28. 6.28 CPU39
    29. 6.29 CPU40
    30. 6.30 CPU46
    31. 6.31 CPU47
    32. 6.32 DMA4
    33. 6.33 DMA7
    34. 6.34 DMA8
    35. 6.35 DMA10
    36. 6.36 EEM8
    37. 6.37 EEM9
    38. 6.38 EEM11
    39. 6.39 EEM13
    40. 6.40 EEM14
    41. 6.41 EEM16
    42. 6.42 EEM17
    43. 6.43 EEM19
    44. 6.44 EEM23
    45. 6.45 FLASH29
    46. 6.46 FLASH31
    47. 6.47 FLASH37
    48. 6.48 JTAG20
    49. 6.49 JTAG26
    50. 6.50 JTAG27
    51. 6.51 MPY1
    52. 6.52 PMAP1
    53. 6.53 PMM8
    54. 6.54 PMM9
    55. 6.55 PMM10
    56. 6.56 PMM11
    57. 6.57 PMM12
    58. 6.58 PMM14
    59. 6.59 PMM15
    60. 6.60 PMM17
    61. 6.61 PMM18
    62. 6.62 PMM20
    63. 6.63 PORT15
    64. 6.64 PORT16
    65. 6.65 PORT17
    66. 6.66 PORT19
    67. 6.67 PORT21
    68. 6.68 RF1A1
    69. 6.69 RF1A2
    70. 6.70 RF1A3
    71. 6.71 RF1A5
    72. 6.72 RF1A6
    73. 6.73 RF1A8
    74. 6.74 RTC3
    75. 6.75 RTC6
    76. 6.76 SYS16
    77. 6.77 TAB23
    78. 6.78 UCS6
    79. 6.79 UCS7
    80. 6.80 UCS9
    81. 6.81 UCS10
    82. 6.82 UCS11
    83. 6.83 USCI26
    84. 6.84 USCI30
    85. 6.85 USCI31
    86. 6.86 USCI34
    87. 6.87 USCI35
    88. 6.88 USCI39
    89. 6.89 USCI40
    90. 6.90 WDG4
  7. 7Revision History

UCS10

UCS Module

Category

Functional

Function

Modulation causes shift in DCO frequency

Description

When the FLL is enabled, the DCO frequency can be tracked automatically by modifying the DCOx and MODx bits. The MODx bits switch between the frequency selected by the DCO bits and the next-higher frequency set by (DCO + 1). The erroneous behavior is seen when the FLL is tracking close to a DCO step boundary and the MOD counter is expected to rollover, but instead the DCO bits increment and the MOD bits decrement. This causes the DCO to shift by up to 12% and remain at an increased frequency until approximately 15 REFCLK cycles have elapsed. The frequency reverts to the expected value immediately afterward.

For example, the modulator moves from DCOx = n and MODx = 31 to DCOx = n + 1
and MODx = 30, causing a large increase in the DCO frequency.

Applications could be impacted as follows:
When using the DCO frequency for asynchronous serial communication and timer operation, the effect can be seen as corrupted data or incorrect timing events.

Workaround

(1) Turn off the FLL.

Or

(2) Implement a Software FLL, comparing the DCO frequency to a known reference such as REFO or LFXT1 using a timer capture and tuning the value of the DCO and MOD bits periodically.

Or

(3) Execute the following sequence in periodic intervals.

1. Disable peripherals sourced by the DCO such as UART and Timer.

2. Turn on the FLL.

3. Wait the worst case settling time of 32 X 32 X fFLLREFCLK to allow it to lock to the target frequency.

4. Turn off the FLL.

5. Compare the DCO frequency to a known reference such as REFO or LFXT1 using a timer capture.

- If the DCO frequency is higher than expected, repeat from step (2) until the frequency reaches to the expected range.

- Else proceed with code execution.

See the application report UCS10 Guidance SLAA489  for more detailed information regarding working with this erratum. This erratum does not affect proper operation of the CPU when MCLK = DCO/FLL and is set to the maximum clock frequency specified in the device datasheet.