SLAZ303AC October   2012  – May 2021 MSP430F5514

 

  1. 1Functional Advisories
  2. 2Preprogrammed Software Advisories
  3. 3Debug Only Advisories
  4. 4Fixed by Compiler Advisories
  5. 5Nomenclature, Package Symbolization, and Revision Identification
    1. 5.1 Device Nomenclature
    2. 5.2 Package Markings
      1.      ZQE80
      2.      RGC64
    3. 5.3 Memory-Mapped Hardware Revision (TLV Structure)
  6. 6Advisory Descriptions
    1. 6.1  BSL6
    2. 6.2  BSL7
    3. 6.3  COMP10
    4. 6.4  CPU21
    5. 6.5  CPU22
    6. 6.6  CPU23
    7. 6.7  CPU26
    8. 6.8  CPU27
    9. 6.9  CPU28
    10. 6.10 CPU29
    11. 6.11 CPU30
    12. 6.12 CPU31
    13. 6.13 CPU32
    14. 6.14 CPU33
    15. 6.15 CPU34
    16. 6.16 CPU35
    17. 6.17 CPU37
    18. 6.18 CPU39
    19. 6.19 CPU40
    20. 6.20 CPU47
    21. 6.21 DMA4
    22. 6.22 DMA7
    23. 6.23 DMA8
    24. 6.24 DMA10
    25. 6.25 EEM9
    26. 6.26 EEM11
    27. 6.27 EEM13
    28. 6.28 EEM14
    29. 6.29 EEM15
    30. 6.30 EEM16
    31. 6.31 EEM17
    32. 6.32 EEM19
    33. 6.33 EEM21
    34. 6.34 EEM23
    35. 6.35 FLASH33
    36. 6.36 FLASH34
    37. 6.37 FLASH35
    38. 6.38 FLASH37
    39. 6.39 JTAG20
    40. 6.40 JTAG26
    41. 6.41 JTAG27
    42. 6.42 MPY1
    43. 6.43 PMAP1
    44. 6.44 PMM9
    45. 6.45 PMM10
    46. 6.46 PMM11
    47. 6.47 PMM12
    48. 6.48 PMM14
    49. 6.49 PMM15
    50. 6.50 PMM17
    51. 6.51 PMM18
    52. 6.52 PMM20
    53. 6.53 PORT15
    54. 6.54 PORT16
    55. 6.55 PORT19
    56. 6.56 PORT24
    57. 6.57 RTC3
    58. 6.58 RTC6
    59. 6.59 SYS10
    60. 6.60 SYS12
    61. 6.61 SYS14
    62. 6.62 SYS16
    63. 6.63 SYS18
    64. 6.64 TAB23
    65. 6.65 USB4
    66. 6.66 USB6
    67. 6.67 USB8
    68. 6.68 USB9
    69. 6.69 USB10
    70. 6.70 USB11
    71. 6.71 USB12
    72. 6.72 USB13
    73. 6.73 USCI26
    74. 6.74 USCI30
    75. 6.75 USCI31
    76. 6.76 USCI34
    77. 6.77 USCI35
    78. 6.78 USCI39
    79. 6.79 USCI40
    80. 6.80 WDG4
  7. 7Revision History

USCI34

USCI Module

Category

Functional

Function

I2C multi-master transmit may lose first few bytes.

Description

In an I2C multi-master system (UCMM =1), under the following conditions:

(1)the master is configured as a transmitter (UCTR =1)

AND

(2)the start bit is set (UCTXSTT =1);

if the I2C bus is unavailable, then the USCI module enters an idle state where it waits and checks for bus release. While in the idle state it is possible that the USCI master updates its TXIFG based on clock line activity due to other master/slave communication on the bus. The data byte(s) loaded in TXBUF while in idle state are lost and transmit pointers initialized by the user in the transmit ISR are updated incorrectly.

Workaround

Verify that the START condition has been sent (UCTXSTT =0) before loading TXBUF with data.

Example:
#pragma vector = USCIAB0TX_VECTOR
__interrupt void USCIAB0TX_ISR(void)
{
// Workaround for USCI34
    if(UCB0CTL1&UCTXSTT)
    {
                                                                       // TXData = pointer to the transmit buffer start
                                                                       // PTxData = pointer to transmit in the ISR
        PTxData = TXData;                                   // restore the transmit buffer pointer if the Start bit is set
    }
//
    if(IFG2&UCB0TXIFG)
    {
        if (PTxData < = PTxDataEnd)                      // Check TX byte counter
        {
            UCB0TXBUF = *PTxData++;                 // Load TX buffer
        }
        else
        {
            UCB0CTL1 |= UCTXSTP;                        // I2C stop condition
            IFG2 &= ~UCB0TXIFG;                          // Clear USCI_B0 TX int flag
            __bic_SR_register_on_exit(CPUOFF);      // Exit LPM0
        }
    }
}