SLLS516E August   2002  – July 2015 SN65LVDS100 , SN65LVDS101 , SN65LVDT100 , SN65LVDT101

UNLESS OTHERWISE NOTED, this document contains PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Description (Continued)
  6. Device Options
  7. Pin Configuration and Functions
  8. Specifications
    1. 8.1 Absolute Maximum Ratings
    2. 8.2 ESD Ratings
    3. 8.3 Recommended Operating Conditions
    4. 8.4 Thermal Information
    5. 8.5 Electrical Characteristics
    6. 8.6 Switching Characteristics
    7. 8.7 Typical Characteristics
  9. Parameter Measurement Information
  10. 10Detailed Description
    1. 10.1 Overview
    2. 10.2 Functional Block Diagram
    3. 10.3 Feature Description
      1. 10.3.1 Receiver Features
        1. 10.3.1.1 Voltage Range and Common-Mode Range
        2. 10.3.1.2 Sensitivity
        3. 10.3.1.3 Failsafe Considerations
        4. 10.3.1.4 VBB Voltage Reference
        5. 10.3.1.5 Integrated Termination
        6. 10.3.1.6 Receiver Equivalent Schematic
      2. 10.3.2 Driver Features
        1. 10.3.2.1 Signaling Rate, Edge Rate, and Added Jitter
        2. 10.3.2.2 SN65LVDx100 LVDS Output
          1. 10.3.2.2.1 Driver Output Voltage
          2. 10.3.2.2.2 Driver Offset
        3. 10.3.2.3 SN65LVDx101 LVPECL Output
          1. 10.3.2.3.1 Driver Voltage
        4. 10.3.2.4 Driver Equivalent Schematics
    4. 10.4 Device Functional Modes
  11. 11Application and Implementation
    1. 11.1 Application Information
    2. 11.2 Typical Application
      1. 11.2.1 PECL to LVDS Translation
        1. 11.2.1.1 Design Requirements
        2. 11.2.1.2 Detailed Design Requirements
        3. 11.2.1.3 Application Curve
      2. 11.2.2 LVDS to 3.3-V PECL Translation
        1. 11.2.2.1 Design Requirements
        2. 11.2.2.2 Detailed Design Requirements
        3. 11.2.2.3 Application Curve
      3. 11.2.3 5-V PECL to 3.3-V PECL Translation
        1. 11.2.3.1 Design Requirements
        2. 11.2.3.2 Detailed Design Requirements
        3. 11.2.3.3 Application Curve
      4. 11.2.4 CML to LVDS or 3.3-V PECL Translation
        1. 11.2.4.1 Design Requirements
        2. 11.2.4.2 Detailed Design Requirements
        3. 11.2.4.3 Application Curve
      5. 11.2.5 Single-Ended 3.3-V PECL to LVDS Translation
        1. 11.2.5.1 Design Requirements
        2. 11.2.5.2 Detailed Design Requirements
        3. 11.2.5.3 Application Curve
      6. 11.2.6 Single-Ended CMOS to LVDS Translation
        1. 11.2.6.1 Design Requirements
        2. 11.2.6.2 Detailed Design Requirements
        3. 11.2.6.3 Application Curve
      7. 11.2.7 Single-Ended CMOS to 3.3-V PECL Translation
        1. 11.2.7.1 Design Requirements
        2. 11.2.7.2 Detailed Design Requirements
        3. 11.2.7.3 Application Curve
      8. 11.2.8 Receipt of AC-Coupled Signals
        1. 11.2.8.1 Design Requirements
        2. 11.2.8.2 Detailed Design Requirements
        3. 11.2.8.3 Application Curve
  12. 12Power Supply Recommendations
  13. 13Layout
    1. 13.1 Layout Guidelines
      1. 13.1.1 Microstrip vs. Stripline Topologies
      2. 13.1.2 Dielectric Type and Board Construction
      3. 13.1.3 Recommended Stack Layout
      4. 13.1.4 Separation Between Traces
      5. 13.1.5 Crosstalk and Ground Bounce Minimization
    2. 13.2 Layout Example
  14. 14Device and Documentation Support
    1. 14.1 Related Links
    2. 14.2 Community Resources
    3. 14.3 Trademarks
    4. 14.4 Electrostatic Discharge Caution
    5. 14.5 Glossary
  15. 15Mechanical, Packaging, and Orderable Information

8 Specifications

8.1 Absolute Maximum Ratings(1)

over operating free-air temperature range unless otherwise noted
MIN MAX UNIT
VCC Supply voltage range(2) –0.5 4 V
IBB VBB output current –0.5 0.5 mA
VI Voltage range, (A, B, Y, Z) 0 4.3 V
VO
VID Differential voltage, |VA – VB| ('LVDT100 and 'LVDT101 only) 1 V
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) All voltage values, except differential I/O bus voltages, are with respect to network ground terminal.

8.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) Pins 2, 3, 5, 6, 7 ±5000 V
All pins except 2, 3, 5, 6, 7 ±2000 V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2) ±1500 V
(1) Tested in accordance with JEDEC Standard 22, Test Method A114-A.7.
(2) Tested in accordance with JEDEC Standard 22, Test Method C101.

8.3 Recommended Operating Conditions

MIN NOM MAX UNIT
Supply voltage, VCC 3 3.3 3.6 V
Magnitude of differential input voltage |VID| 'LVDS100 or 'LVDS101 0.1 1 V
'LVDT100 or 'LVDT101 0.1 0.8
Input voltage (any combination of common-mode or input signals), VI 0 4 V
VBB output current, IO(VBB) –400(1) 12 µA
Operating free-air temperature, TA –40 85 °C
(1) The algebraic convention, in which the less positive (more negative) limit is designated minimum, is used in this data sheet.

8.4 Thermal Information

THERMAL METRIC(1) SN65LVDS100, SN65LVDT100, SN65LVDS101, SN65LVDT101 UNIT
D DGK
8 PINS 8 PINS
RθJA Junction-to-ambient thermal resistance 208 263 °C/W
Power dissipation rating: TA ≤ 25°C 151 377 mW
Power dissipation rating: TA ≤ 85°C 192 481
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

8.5 Electrical Characteristics

over recommended operating conditions (unless otherwise specified)
PARAMETER TEST CONDITIONS MIN TYP(1) MAX UNIT
ICC Supply current, 'LVDx100 No load or input 25 30 mA
Supply current, 'LVDx101 RL = 50 Ω to 1 V, No input 50 61
PD Device power dissipation, 'LVDx100 RL = 100 Ω, No input 110 mW
Device power dissipation, 'LVDx101 Y and Z to VCC – 2 V through 50 Ω
No input
116 142
VBB Reference voltage output, 'LVDS100 or 'LVDS101 IO = –400 µA or 12 µA VCC – 1.4 VCC – 1.35 VCC – 1.3 mV
SN65LVDS100 and SN65LVDS101 INPUT CHARACTERISTICS (see Figure 30)
VIT+ Positive-going differential input voltage threshold See Figure 30 and Table 1 100 mV
VIT– Negative-going differential input voltage threshold –100
II Input current VI = 0 V or 2.4 V
Second input at 1.2 V
–20 20 µA
VI = 4 V, Second input at 1.2 V 33 µA
II(OFF) Power off input current VCC = 1.5 V, VI = 0 V or 2.4 V
Second input at 1.2 V
–20 20 µA
VCC = 1.5 V, VI = 4 V
Second input at 1.2 V
33
IIO Input offset current (|IIA - IIB|) VIA = VIB, 0 ≤ VIA ≤ 4 V –6 6 µA
Ci Small-signal input capacitance to GND VI = 1.2 V 0.6 pF
SN65LVDT100 and SN65LVDT101 INPUT CHARACTERISTICS (see Figure 30)
VIT+ Positive-going differential input voltage threshold See Figure 30 and Table 1 100 mV
VIT– Negative-going differential input voltage threshold –100
II Input current VI = 0 V or 2.4 V, Other input open –40 40 µA
VI = 4 V, Other input open 66
II(OFF) Power off input current VCC = 1.5 V, VI = 0 V or 2.4 V
Other input open
–40 40 µA
VCC = 1.5 V, VI = 4 V
Other input open
66
R(T) Differential input resistance VID = 300 mV or 500 mV
VIC = 0 V or 2.4 V
90 110 132 Ω
VCC = 0 V, VID = 300 mV or 500 mV
VIC = 0 V or 2.4 V
90 110 132
Ci Small-signal differential input capacitance VI = 1.2 V 0.6 pF
SN65LVDS100 and SN65LVDT100 OUTPUT CHARACTERISTICS (see Figure 30)
|VOD| Differential output voltage magnitude See Figure 31 247 340 454 mV
Δ|VOD| Change in differential output voltage magnitude between logic states –50 50
VOC(SS) Steady-state common-mode output voltage See Figure 32 1.125 1.375 V
ΔVOC(SS) Change in steady-state common-mode output voltage between logic states –50 50 mV
VOC(PP) Peak-to-peak common-mode output voltage 50 150 mV
IOS Short-circuit output current VO(Y) or VO(Z) = 0 V –24 24 mA
IOS(D) Differential short-circuit output current VOD = 0 V –12 12 mA
SN65LVDS101 and SN65LVDT101 OUTPUT CHARACTERISTICS (see Figure 30)
VOH High-level output voltage 50 Ω to VCC – 2 V, See Figure 39 VCC – 1.25 VCC – 1.02 VCC – 0.9 V
VCC = 3.3 V, 50-Ω load to 2.3 V 2055 2280 2405 mV
VOL Low-level output voltage 50 Ω to VCC – 2 V, See Figure 39 VCC – 1.83 VCC – 1.61 VCC – 1.53 V
VCC = 3.3 V, 50-Ω load to 2.3 V 1475 1690 1775 mV
|VOD| Differential output voltage magnitude 50-Ω load to VCC – 2 V, See Figure 39 475 575 750 mV
(1) Typical values are with a 3.3-V supply voltage and room temperature

8.6 Switching Characteristics

over recommended operating conditions (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP(1) MAX UNIT
tPLH Propagation delay time, low-to-high-level output 'LVDx100 See Figure 33 300 470 800 ps
'LVDx101 400 630 900
tPHL Propagation delay time, high-to-low-level output 'LVDx100 300 470 800 ps
'LVDx100 400 630 900
tr Differential output signal rise time (20% to 80%) 220 ps
tf Differential output signal fall time (20% to 80%) 220 ps
tsk(p) Pulse skew (|tPHL – tPLH|)(2) 5 50 ps
tsk(pp) Part-to-part skew(3) VID = 0.2 V, See Figure 33 100 ps
tjit(per) RMS period jitter(4) 1 GHz 50% duty-cycle square-wave input
VID = 200 mV, VIC = 1.2 V
See Figure 34
1 3.7 ps
tjit(cc) Peak cycle-to-cycle jitter(5) 6 23 ps
tjit(pp) Peak-to-peak jitter 2 GHz PRBS, 223 – 1 run length
VID = 200 mV, VIC = 1.2 V
See Figure 34
28 65 ps
tjit(det) Peak-to-peak deterministic jitter(6) 2 GHz PRBS, 27 – 1 run length
VID = 200 mV, VIC = 1.2 V
See Figure 34
17 48 ps
(1) All typical values are at 25°C and with a 3.3-V supply.
(2) tsk(p) is the magnitude of the time difference between the tPLH and tPHL of any output of a single device.
(3) tsk(pp) is the magnitude of the time difference in propagation delay time between any specified terminals of two devices when both devices operate with the same supply voltages, at the same temperature, and have identical packages and test circuits.
(4) Period jitter is the deviation in cycle time of a signal with respect to the ideal period over a random sample of 1,000,000 cycles.
(5) Cycle-to-cycle jitter is the variation in cycle time of a signal between adjacent cycles, over a random sample of 1,000 adjacent cycle pairs.
(6) Deterministic jitter is the sum of pattern-dependent jitter and pulse-width distortion.

8.7 Typical Characteristics

SN65LVDS100 SN65LVDT100 SN65LVDS101 SN65LVDT101 tc_supfre_lls516.gifFigure 1. Supply Current vs Frequency
SN65LVDS100 SN65LVDT100 SN65LVDS101 SN65LVDT101 tc_diff_lls516.gifFigure 3. Differential Output Voltage vs Frequency
SN65LVDS100 SN65LVDT100 SN65LVDS101 SN65LVDT101 tc_prop2_lls516.gifFigure 5. SN65LVDS101 Propagation Delay Time vs Common-Mode Input Voltage
SN65LVDS100 SN65LVDT100 SN65LVDS101 SN65LVDT101 tc_prop4_lls516.gifFigure 7. SN65LVDS101 Propagation Delay Time vs Free-Air Temperature
SN65LVDS100 SN65LVDT100 SN65LVDS101 SN65LVDT101 tc_ppdr_lls516.gifFigure 9. SN65LVDS100 Peak-to-Peak Jitter vs Data Rate
SN65LVDS100 SN65LVDT100 SN65LVDS101 SN65LVDT101 tc_pp3_lls516.gifFigure 11. SN65LVDS101 Peak-to-Peak Jitter vs Data Rate
SN65LVDS100 SN65LVDT100 SN65LVDS101 SN65LVDT101 tc_pp5_lls516.gifFigure 13. SN65LVDS100 Peak-to-Peak Jitter vs Data Rate
SN65LVDS100 SN65LVDT100 SN65LVDS101 SN65LVDT101 tc_pp7_lls516.gifFigure 15. SN65LVDS101 Peak-to-Peak Jitter vs Data Rate
SN65LVDS100 SN65LVDT100 SN65LVDS101 SN65LVDT101 tc_pp9_lls516.gifFigure 17. SN65LVDS100 Peak-to-Peak Jitter vs Data Rate
SN65LVDS100 SN65LVDT100 SN65LVDS101 SN65LVDT101 tc_pp11_lls516.gifFigure 19. SN65LVDS101 Peak-to-Peak Jitter vs Data Rate
SN65LVDS100 SN65LVDT100 SN65LVDS101 SN65LVDT101 tc_diff2_lls516.gifFigure 21. SN65LVDS100 Differential Output Voltage vs Frequency
SN65LVDS100 SN65LVDT100 SN65LVDS101 SN65LVDT101 tc_diff3_lls516.gifFigure 23. SN65LVDS101 Differential Output Voltage vs Frequency
SN65LVDS100 SN65LVDT100 SN65LVDS101 SN65LVDT101 tc_supair_lls516.gifFigure 2. Supply Current vs Free-Air Temperature
SN65LVDS100 SN65LVDT100 SN65LVDS101 SN65LVDT101 tc_prop_lls516.gifFigure 4. SN65LVDS100 Propagation Delay Time vs Common-Mode Input Voltage
SN65LVDS100 SN65LVDT100 SN65LVDS101 SN65LVDT101 tc_prop3_lls516.gifFigure 6. SN65LVDS100 Propagation Delay Time vs Free-Air Temperature
SN65LVDS100 SN65LVDT100 SN65LVDS101 SN65LVDT101 tc_ppjit_lls516.gifFigure 8. SN65LVDS100 Peak-to-Peak Jitter vs Frequency
SN65LVDS100 SN65LVDT100 SN65LVDS101 SN65LVDT101 tc_pp2_lls516.gifFigure 10. SN65LVDS101 Peak-to-Peak Jitter vs Frequency
SN65LVDS100 SN65LVDT100 SN65LVDS101 SN65LVDT101 tc_pp4_lls516.gifFigure 12. SN65LVDS100 Peak-to-Peak Jitter vs Frequency
SN65LVDS100 SN65LVDT100 SN65LVDS101 SN65LVDT101 tc_pp6_lls516.gifFigure 14. SN65LVDS101 Peak-to-Peak Jitter vs Frequency
SN65LVDS100 SN65LVDT100 SN65LVDS101 SN65LVDT101 tc_pp8_lls516.gifFigure 16. SN65LVDS100 Peak-to-Peak Jitter vs Frequency
SN65LVDS100 SN65LVDT100 SN65LVDS101 SN65LVDT101 tc_pp10_lls516.gifFigure 18. SN65LVDS101 Peak-to-Peak Jitter vs Frequency
SN65LVDS100 SN65LVDT100 SN65LVDS101 SN65LVDT101 tc_pp12_lls516.gifFigure 20. SN65LVDS100 Peak-to-Peak Jitter vs Free-Air Temperature
SN65LVDS100 SN65LVDT100 SN65LVDS101 SN65LVDT101 tc_pp13_lls516.gifFigure 22. SN65LVDS100 Peak-to-Peak Jitter vs Data Rate
SN65LVDS100 SN65LVDT100 SN65LVDS101 SN65LVDT101 tc_pp14_lls516.gifFigure 24. SN65LVDS101 Peak-to-Peak Jitter vs Data Rate
SN65LVDS100 SN65LVDT100 SN65LVDS101 SN65LVDT101 tc_eye2_lls516.gifFigure 25. SN65LVDS100 Mbps, 223 – 1 PRBS
SN65LVDS100 SN65LVDT100 SN65LVDS101 SN65LVDT101 tc_eye4_lls516.gifFigure 27. SN65LVDS101 Mbps, 223 – 1 PRBS
SN65LVDS100 SN65LVDT100 SN65LVDS101 SN65LVDT101 temp2_lls516.gif

NOTE:

VIT is a steady-state parameter. The switching time is influenced by the input overdrive above this steady-state threshold up to a differential input voltage magnitude of 100 mV.
Figure 29. SN65LVDS100 Simulated Input Voltage Threshold vs Common-Mode Input Voltage, Supply Voltage, and Temperature
SN65LVDS100 SN65LVDT100 SN65LVDS101 SN65LVDT101 tc_eye3_lls516.gifFigure 26. SN65LVDS100 Gbps, 223 – 1 PRBS
SN65LVDS100 SN65LVDT100 SN65LVDS101 SN65LVDT101 tc_eye5_lls516.gifFigure 28. SN65LVDS101 Gbps, 223 – 1 PRBS